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Abstract— To achieve control objectives for extremely com-

plex and very large scale networks using standard methods

is a challenging, if not intractable, task. In this paper, we

propose a novel way to approximately control network systems

which lie in a sequence with a well defined limit by the use of

graphon theory and the theory of infinite dimensional systems.

The general controllability problem is analyzed for the infinite

system and then the control performance in terms of the upper

bound for the L2
state error between the limit system and the

sequence of network systems is given. Finally, an example of

the application of the minimum energy control methodology

for network systems with sampled weightings is demonstrated.

I. INTRODUCTION

Complex network systems are everywhere such as bio-
logical, gene, brain, citation, electric and social networks.
The study of large scale networks has been the focus of
much research. On one hand, scientists are studying the
structural properties of networks, characterizing the struc-
tures and building models [1], [2] to mimic and reproduce
certain structural properties of networks. On the other hand,
researchers are studying networks of interacting dynamical
systems to learn what collective behaviours would emerge
over the interacting dynamical systems on a complex net-
work. Over the past 15 years, topics such as network models,
structures, controllability, observability, consensusability and
synchronization in complex networks have been studied in
system and network science [3], [4], [5], [6], [7], [8], [9],
[10], [11].

To achieve control objectives for extremely complex and
very large scale networks using standard methods is a
challenging, if not intractable, task. In this work we propose a
novel way to achieve approximate control for such networks
by using the theory of graphons and infinite dimensional
system theory. The proposed control strategy consists of the
following steps: (1) Consider the general control problem
of steering the states of each member of a sequence S of
network systems {SN

; 1  N  1} to each of a sequence
x
T

of desired states {xN

T

; 1  N  1}, where it is assumed
that S converges to some limit system LS1 and x

T

to some
x1
T

. (2) Specify the corresponding control problem CP1 for
LS1 on L2

[0, 1] and choose a tolerance " > 0. (3) Find the
control law u1 solving CP1. (4) Then our main results in
this paper together with the convergence of the x

T

sequence
yield N

"

such that xN

T

(uN

) is within " of x1
T

and of xN

T

for
all N � N

"

.
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II. PRELIMINARIES

A. Graphs, Adjacency Matrices and Pixel Pictures
The underlying structure of a network can be described by

a graph G = (V,E) specified by a vertex set V and an edge
set E which represents the connections between vertices.
An equivalent representation of a graph G = (V,E) by a
matrix called an adjacency matrix is defined to be the square
|V | ⇥ |V | matrix A such that an element A

ij

is one when
there is an edge from vertex i to vertex j, and zero otherwise.
If the graph is a weighted graph where edges are associated
with weights, then the adjacency matrix has corresponding
weighted elements.

Another representation of the adjacency matrix is given by
a pixel diagram where the 0s are replaced by white squares
and the 1s by black squares. The whole pixel diagram is
presented in a unit square, so the square elements have sides
of length 1

n

, where n is the number of vertices.

Fig. 1. Petersen Graph, Adjacency Matrix, Pixel Diagram [12]

B. Graphon
Graphon theory was introduced and developed in recent

years by L. Lovász, B. Szegedy, C. Borgs, J. T. Chayes, V. T.
Sós, and K. Vesztergombi among others in [13], [14], [15],
[16], [12]. This work draws on graph theory (graphs are in
fact special types of graphons), measure theory, probability,
and functional analysis. A meaningful convergence with
respect to the cut metric ([12]) is defined for sequences of
dense and finite graphs. Graphons are then the limit objects
of converging graph sequences. This concept is illustrated by
a sequence of half graphs ([12]) represented by a sequence
of pixel diagrams on the unit square converging to its limit
in Fig. 2.

Fig. 2. Graph Sequence Converging to Its Limit [12]

The set of finite graphs endowed with the cut metric
gives rise to a metric space, and the completion of this
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space is the space of graphons. Graphons are represented
by bounded symmetric Lebesgue measurable functions W :

[0, 1]2 ! [0, 1], which can be interpreted as weighted
graphs on the vertex set [0, 1]. We note that in some papers,
for instance [17], the word ”graphon” refers to symmetric,
integrable functions from [0, 1] to R. In this paper, unless
stated otherwise, the term ”graphon” is used to refer to
functions W1 : [0, 1]2 ! [�1, 1] and ˜

G

sp
1 denotes the space

of graphons. Let ˜

G

sp
0 represent the space of all graphons

satisfying W0 : [0, 1]2 ! [0, 1]; let ˜

G

sp denote the space of
all symmetric measurable functions W : [0, 1]2 ! R.

The cut norm of a graphon is then defined as

kWk⇤ = sup

M,T⇢[0,1]
|
Z

M⇥T

W(x, y)dxdy| (1)

with the supremum taking over all measurable subsets M
and T of [0, 1]. The inequalities between the different norms
on a graphon W are

kWk⇤  kWk1  kWk2  kWk1  1. (2)

Denote the set of measure preserving bijections from [0, 1]
to [0, 1] by S[0,1]. The cut metric between two graphons V

and W is then given by

d⇤(W,V) = inf

�2S[0,1]

kW� �Vk⇤, (3)

where W

�

(x, y) = W(�(x),�(y)). We see that the cut
metric d⇤(·, ·) is given by measuring the maximum discrep-
ancy between the integrals of two graphons over measurable
subsets of [0, 1], then minimizing the maximum discrepancy
over all possible measure preserving bijections.

Since the cut metric of two different graphons can be 0,
strictly speaking it is not a metric. See [15], [18] for various
characterizations of when the cut distance is 0. By identifying
functions V and W for which d⇤(V,W) = 0, we can
construct the metric space G

sp
1 which denotes the image of

˜

G

sp
1 under this identification. Similarly we construct G

sp
0

from ˜

G

sp
0 and G

sp from ˜

G

sp.
We define the L2 metric for any graphons W and V as

d
L

2
(W,V) = inf

�2S[0,1]

kW� �Vk2

= inf

�2S[0,1]

 Z

[0,1]2
|W�

(x, y)�V(x, y)|2dxdy
! 1

2

.

Then we can prove that for any two graphons W and V

d⇤(W,V)  d
L

2
(W,V). (4)

C. Compactness of the Graphon Space
Theorem 1: [12]. The space (G

sp
0 , d⇤) is compact.

This remains valid if G

sp
0 is replaced by any uniformly

bounded subset of Gsp closed in the cut metric [12].
Theorem 2: [12]. The space (G

sp
1 , d⇤) is compact.

Sets in G

sp
1 compact with respect to the L2 metric are

compact with respect to the cut metric. It follows immedi-
ately from (4) and Theorem 2 (or Theorem 1), if a graphon
sequence is Cauchy in the L2 metric then it is also a Cauchy
sequence in the cut metric and under both metrics, the limits
are identical in G

sp
1 (or Gsp

0 ).

D. Step Functions in the Graphon Space

Graphons generalize weighted graphs in the following
sense (see [12]). A function W 2 G

sp
1 is called a step

function if there is a partition Q = {Q1, ..., Qk

} of [0, 1] into
measurable sets such that W is constant on every product set
Q

i

⇥Q
j

. The sets Q
i

are the steps of W. For every weighted
graph G (on node set V (G)), a step function SG 2 G

sp
1

is given as follows: partition [0, 1] into n measurable sets
Q1, · · · , Qn

of measure µ(Q
i

) =

↵i
↵G

, then for x 2 Q
i

and
y 2 Q

j

, we let SG(x, y) = �
ij

(G), where ↵
i

denotes the
node weight of ith node, ↵(G) =

P
i

↵
i

and �
ij

(G) denotes
the weight of the edge from node i to node j. Evidently
the function SG depends on the labelling of the nodes of
G. We define the uniform partition PN

= {P1, P2, ..., PN

}
of [0, 1] by setting P

k

= [

k�1
N

, k

N

), k 2 {1, N � 1} and
P
N

= [

N�1
N

, 1]. Then µ(P
i

) =

1
N

, i 2 {1, 2, ..., N}. Under
the uniform partition, the step functions can be represented
by the pixel diagram on the unit square.

E. Graphons as Operators

Following [12], a graphon W 2 G

sp
1 can be interpreted

as an operator W : L2
[0, 1] ! L2

[0, 1]. The operation on
v 2 L2

[0, 1] is defined as follows:

[Wv](x) =

Z 1

0
W(x,↵)v(↵)d↵, (5)

the operator product is then defined by

[UW](x, y) =

Z 1

0
U(x, z)W(z, y)dz, (6)

where U,W 2 G

sp
1 . Note that if U 2 G

sp
1 and W 2 G

sp
1 ,

then UW 2 G

sp
1 since for all x, y 2 [0, 1]

|[UW](x, y)| = |
Z 1

0
U(x, z)W(z, y)dz|


Z 1

0
|U(x, z)W(z, y)|dz  1.

(7)

Consequently, the power W

n of an operator W 2 G

sp
1 is

defined as

W

n

(x, y) =

Z

[0,1]n
W(x,↵1) · · ·W(↵

n�1, y)d↵1 · · · d↵n�1,

with W

n 2 G

sp
1 (n � 1). W0 is formally defined as the

identity operator on functions in L2
[0, 1], but we note that

W

0 is not a graphon.

F. The Graphon Unitary Operator Algebra

We have an operator algebra GA over the field R (see [19])
acting on elements of L2

[0, 1] as given by equation (5). By
adjoining the identity element I to the algebra GA we obtain
a unitary algebra GAI . The identity element I is defined as
follows: for any W 2 L2

[0, 1]2

[IW](x, y) =

Z 1

0
W(z, y)�(x, z)dz = W(x, y), (8)

where �(·, z)dz is the measure satisfying
R 1
0 u(z)�(x, z)dz =

u(x) for all u 2 L2
[0, 1], and in particular

R 1
0 �(x, z)dz = 1.



The graphon unitary operator algebra GAI will be used in the
definition of the controllability Gramian and the input oper-
ator. More specifically, we use the subset G1

AI = {G1
A, I}

where G1
A is the set in GA that corresponds to ˜

G

sp
1 .

G. Graphon Differential Equations

Let X be a Banach space. A linear operator A : D(A) ⇢
X ! X is closed if {(x,Ax) : x 2 D(A)} is closed in the
product space X ⇥ X(see [20]). L(X) denotes the Banach
algebra of all linear continuous mappings T : X ! X.
Lp

(a, b;X) denotes the Banach space of equivalent classes
of strongly measurable (in the Böchner sense) mappings
[a, b] ! X that are p-integrable, 1  p < 1, with norm

kfk
L

p(a,b;X) =

hR
b

a

|f(s)|pds
i 1

p
. A mapping S : R !

L(X) is said to be a strongly continuous semigroup on X if
the following properties hold:

(1) S(0) = I, S(t+ s) = S(t)S(s), 8t, s � 0

(2) for all x 2 X , S(·)x is continuous on R.
A uniformly continuous semigroup is a strongly continuous
semigroup S such that lim

t!0+ kS(t) � Ik = 0, with k · k
as the operator norm on a Banach space. The infinitesimal
generator A of a strongly continuous semigroup S is the
linear operator in X defined by

Ax = lim

t!0+

1

t
[S(t)x� x], 8x 2 D(A), (9)

where

D(A) = {x 2 X : s.t. lim

t!0+

1

t
[S(t)x� x] exists }.

Let A : [0, 1]2 ! [�1, 1] be a graphon and hence a
bounded and closed linear operator from L2

[0, 1] to L2
[0, 1].

Following [21], A is the infinitesimal generator of the
uniformly (hence strongly) continous semigroup SA(t) :=

eAt

=

P1
k=0

t

kAk

k! . Therefore, the initial value problem of
the graphon differential equation

ẏt = Ayt, y0 2 L2
[0, 1] (10)

has a solution given by yt = eAt

y0.
Theorem 3 ([19]): Let {AN}1

N=1 be a sequence of
graphons such that AN ! A⇤ as N ! 1 in the L2 metric.
Then for all x 2 L2

[0, 1], eANt

x ! eA⇤t
x as N ! 1 in

the L2 metric where the convergence is pointwise in time
and uniform on any time interval [0, T ].

III. NETWORK SYSTEMS AND THEIR LIMIT SYSTEMS

A. Scaled Network Systems with Node Averaging Dynamics

Consider an interlinked network SN of linear (symmetric)
dynamical subsystems {SN

i

; 1  i  N}, each with an n
dimensional state space. Each subsystem SN

i

is uniquely
associated to a vertex of the N node graph G

N

whose
undirected edges correspond to the dynamical interactions
between the subsystems specified as below:

SN

i

:

ẋi

t

=

1

N

NX

j=1

¯A
Nij

�

n
xj

t

+

1

N

NX

j=1

¯B
Nij

F

n
uj

t

,

xi

t

, ui

t

2 Rn, i 2 {1, ..., N},

(11)

with ¯A
N

= [

¯A
Nij ],

¯B
N

= [

¯B
Nij ] 2 RN⇥N representing

respectively the adjacency matrices of G
N

and of the input
graph. Assume �, F 2 Rn⇥n are symmetric matrices. Then
the (symmetric) linear dynamics for the network system
SN

(A
N

, B
N

, G
N

) can be represented by

SN

:

ẋ
t

= A
N

� x
t

+B
N

� u
t

,

x
t

, u
t

2 RnN , A
N

, B
N

2 RnN⇥nN ,
(12)

where A
N

=

¯A
N

⌦ � denotes the symmetric (matrix
weighted) adjacency matrix of G

N

, B
N

=

¯B
N

⌦F denotes
the linear input-to-state mapping, and � denotes the so called
averaging operator given by A

N

� x =

1
(nN)AN

x. Let S =

⇥1
N=1SN where SN

= [
AN ,BN ,GNSN

(A
N

, B
N

, G
N

). For
simplicity, we require the elements of A

N

and B
N

to be
in [�1, 1] for each N (note that in general A

N

and B
N

have elements that are bounded real numbers for which case
we would achieve similar results). In addition, we note that
if we take the supremum norm on vectors in RnN , i.e.
kxk1 = sup

i

|x
i

|, and the corresponding � operator norm
of A, i.e. kAk

op

= supkxk1 6=0
kA�xk1
kxk1

, then kAk
op

 1.

B. Network Systems with Node Averaging Dynamics De-
scribed by Step Functions in the Graphon Space

Let {(A
N

;B
N

)}1
N=1 2 S be a sequence of systems with

the node averaging dynamics each of which is described
according to (12). Let |A

Nij

|  1 and |B
Nij

|  1 for
all i, j 2 {1, ..., nN}. Let A

[N]
s ,B

[N]
s 2 G

sp
1 be the step

functions corresponding one-to-one to A
N

and B
N

; these
are specified using the uniform partition PnN of [0, 1] by
the following matrix to step function mapping M

G

: for all
i, j 2 {1, 2, ..., nN},

A

[N]
s (x, y) := A

Nij

, 8(x, y) 2 P
i

⇥ P
j

, (13)

and similar for B[N]
s .

Define a piece-wise constant function on R to be any func-
tion of the form

P
l

k=1 ↵k

 
Ik where ↵1, ...,↵l

are complex
numbers and each I

k

is a bounded interval (open, closed,
or half-open). Let L2

pwc

[0, 1] denote the space of piece-wise
constant L2

[0, 1] functions under the uniform partition PnN .
Let us

t 2 L2
pwc

[0, 1] correspond one-to-one to u
t

2 RnN

via the following vector to step function mapping also
denoted by M

G

: for all i 2 {1, ..., nN},

u

s
t(↵) := u

t

(i), 8↵ 2 P
i

, (14)

and x

s
t 2 L2

pwc

[0, 1] similarly correspond one-to-one to x
t

2
RnN .

Lemma 1 ([19]): The trajectories of the system in (12)
correspond one-to-one under the mapping M

G

to the trajec-
tories of the system

ẋ

s
t = A

[N]
s x

s
t +B

[N]
s u

s
t,

x

s
t,u

s
t 2 L2

pwc

[0, 1],A[N]
s ,B[N]

s 2 G

sp
1 ⇢ G1

AI
(15)

with graphon operations defined according to (5).



C. Limits of Sequences of Network Systems

Now the sequence of network systems with the node
averaging dynamics can be described by the sequence of step
function operators as {(A[N]

s ;B

[N]
s )}1

N=1. Let the graphon
sequences {A[N]

s } and {B[N]
s } be Cauchy sequences of step

functions in L2
[0, 1]2. Due to the completeness of L2

[0, 1]2,
the respective graphon limits A and B exist and these will
then necessarily be the limits in the cut metric (see [12]).

IV. THE LIMIT GRAPHON SYSTEM AND ITS PROPERTIES

A. Infinite Dimensional Graphon Systems

We follow [20] and specialize the Hilbert space of states
H and the Hilbert space of controls U appearing there to the
space L2

(R;L2
[0, 1]). We formulate an infinite dimensional

linear system as follows:

LS1
: ẋt = Axt +But, x0 2 L2

[0, 1], (16)

where A,B 2 G

sp
1 ⇢ G1

AI are graphons, and hence bounded
operators on L2

[0, 1], xt 2 L2
[0, 1] is the system state at time

t and ut 2 L2
[0, 1] is the control input at time t.

B. Uniqueness of the Solution

A solution x(·) 2 L2
(R;L2

[0, 1]) is a (mild) solution of
(16) if xt = e(t�a)A

xa+
R
t

0 e(t�s)A
Busds for all a and t in

R such that a  t (see [20]). Following [20] the assumptions
on the operators A and B are

(H1)

8
<

:

(i) A generates a strongly continuous
semigroup etA on L2

[0, 1],
(ii) B 2 L(L2

[0, 1];L2
[0, 1]),

where the Hilbert space U (control space) in the present case
is L2

[0, 1]. Under assumption (H1), the system (16) has a
unique solution x 2 C([0, T ];L2

[0, 1]) for any x0 2 L2
[0, 1]

and any u 2 L2
(0, T ;L2

[0, 1]).
Theorem 4: The graphon system LS1 in Eq. (16) has a

unique solution x 2 C([0, T ];L2
[0, 1]) for any x0 2 L2

[0, 1]
and any u 2 L2

(0, T ;L2
[0, 1]).

Proof: Since A as a graphon operator generates a uni-
formly continuous semigroup, H1(i) is satisfied. Moreover
B as a graphon operator is bounded and hence a continous
linear mapping from control space U = L2

[0, 1] to the
state space L2

[0, 1] satisfying H1(ii). Therefore the system
(16) has a unique solution x 2 C([0, T ];L2

[0, 1]) for any
x0 2 L2

[0, 1] and any u 2 L2
(0, T ;U).

C. Controllability

The system (A;B) is controllable on [0, T ] if for any
initial state x0 2 L2

[0, 1] and any target state xT 2 L2
[0, 1],

there exists a control u 2 L2
(0, T ;U) driving the system

from x0 to xT, i.e. xT = eATx0 +
R
T

0 eA(T�t)
Butdt.

A necessary and sufficient condition for the system (A;B)

to be controllable (called exact controllability in this case in
[22]) on [0, T ] is

(WTh, h) � c
T

khk2, 8h 2 L2
[0, 1],

where WT =

R
T

0 eAt

BB

T eA
T
tdt is the controllability

Gramian operator (see [20], [22]), c
T

> 0 and k · k is the

L2
[0, 1] norm. WT as an operator in the graphon unitary

operator algebra acts on any L2
[0, 1] function h as follows:

8↵ 2 [0, 1], [WTh](↵) =

Z 1

0
WT(↵, z)h(z)dz. (17)

We note that in the present case, a state x in the state
space is an equivalence class of L2

[0, 1] functions which are
zero distance from any representative of the class.

V. LIMIT GRAPHON CONTROL OF LARGE-SCALE
NETWORKS

A. Approximation of L2
[0, 1] Input Functions via Piece-wise

Constant Functions

Theorem 5: [23](p.198) Let � be any measure on R and
let 1  p < 1. Then piece-wise constant functions on R
form a dense subset of Lp

(R,B
�

,�).
Therefore piece-wise constant functions can approximate

L2 functions arbitrarily well. In our case, we want to
approximate the control input ut(·) 2 L2

[0, 1], 0  t  T ,
through a piece-wise constant function in L2

[0, 1] denoted
by u

N
t (·). Specifically, the approximation of input ut(·) by

u

N
t (·) with the partition Q = {Q1, Q2, · · · , QnN

} of [0, 1]
is given as follows: for all Q

i

, i 2 {1, 2, . . . , nN},

u

N
t (↵) =

1

µ(Q
i

)

Z

Qi

ut(�)d�, 8↵ 2 Q
i

, (18)

where µ(Q
i

) denotes the measure of Q
i

.

B. Limit Control for Network Systems with General Graphon
Input Mappings

Consider a finite dimensional system (A
N

;B
N

) with node
averaging dynamics as in (12) and (A

[N]
s ;B

[N]
s ) as its

equivalent step function system according to (13).
Theorem 6 ([19]): Consider a sequence of network sys-

tems {(A[N]
s ;B

[N]
s )} converging to a graphon system

(A;B), i.e. A

[N]
s ! A and B

[N]
s ! B in the L2 metric

as N ! 1. Assume that (A;B) is controllable and that for
some N0, (AN , BN

) is controllable for all N � N0. Then
for any T > 0, N � N0 and for any x in L2

[0, 1]:
(1) there exists v 2 L2

[0, 1] such that xT(v) = x, and for
each N � N0 there exists a control v[N] for (A

[N]
s ;B

[N]
s )

approximating the control v for (A;B) such that

kxT(v)�x

N
T (v

[N]
)k2

kAN
�k2kBk2

Z
T

0
eT�⌧

(T � ⌧) · kv
⌧

k2d⌧

+ kBN
�k2

Z
T

0
e(T�⌧)kA[N]

s k2 · kv
⌧

k2d⌧,

(19)

where A

N
� = A�A

[N]
s and B

N

� = B�B

[N]
s ;

(2) furthermore, lim
N!1 kxT(v)� x

N
T (v

[N]
)k2 = 0.

The control approximation is given in the following:
v

[N]
t (↵) = nN

R
Pi

vt(�)d�, for all ↵ 2 P
i

, with the uniform
partition PnN

= {P1, · · · , PnN

}. Then according to the M
G

mapping, the control law vN (·) for the finite network system
(A

N

;B
N

) is given by

vN
t

(i) = v

[N]
t (↵), 8i 2 {1, ..., nN}, 8↵ 2 P

i

, t 2 [0, T ].



C. Limit Control for Network Systems with the Identity Input
Mapping

In fact, the control input mapping B is not limited to be
a graphon mapping. As long as the control input map is a
continous mapping from L2

[0, 1] to L2
[0, 1], the existence

and uniqueness of a solution are guaranteed. The identity
operator I is a continous mapping from L2

[0, 1] to L2
[0, 1]

and hence the system (A; I) has a unique solution. We note
that while the identity operator I may be represented by a
positive measure on the diagonal in [0, 1]2 and it may be
treated as an element of L1

[0, 1]2, it is not an element of
L2

[0, 1]2 and hence not in G

sp
1 .

Consider a finite dimensional system (A
N

; I
N

) with node
averaging dynamics and (A

[N]
s ; I) as its equivalent step

function system according to (13).
Lemma 2 ([19]): Suppose A

[N]
s ! A in L2

[0, 1]2 metric
as N ! 1. Then there exists a control u[N] for (A

[N]
s ; I)

approximating the control u for (A; I) such that

kxT(u)� x

N
T (u

[N]
)k2 kAN

�k2
Z

T

0
eT�⌧

(T � ⌧)ku
⌧

k2d⌧

+ k
Z

T

0
[u

⌧

� u

[N]
⌧

]d⌧k2, (20)

where A

N
� = A�A

[N]
s . The control approximation is given

by u

[N]
t (↵) = nN

R
Pi

ut(�)d�, for all ↵ 2 P
i

, with the
uniform partition PnN

= {P1, · · · , PnN

}.
Here the control law uN

(·) for the finite network system
(A

N

; I
N

) is given by

uN

t

(i) = u

[N]
t (↵), 8i 2 {1, ..., nN}, 8↵ 2 P

i

, t 2 [0, T ].

Note that uN always exists by definition since the control
approximation given by (18) uses the same uniform partition
as the step function approximation in the graphon space.

D. Limit Graphon Control Strategy (LGCS)

The proposed control strategy consists of four steps:
(1) Consider the control problem of steering the states of

each member of {(A
N

;B
N

)}1
N=1 2 S to each of a sequence

of desired states {xN

T

2 RnN}1
N=1. Let {(A[N]

s ;B

[N]
s ) 2

G

sp
1 ⇥G

sp
1 }1

N=1 be the sequence of step function systems
equivalent to {(A

N

;B
N

)}1
N=1 2 S under the mapping M

G

and assume that it converges to the graphon system (A;B) 2
G

sp
1 ⇥G

sp
1 in the L2 metric. Let {xN

T 2 L2
[0, 1]}1

N=1 be the
image of {xN

T

2 RnN}1
N=1 under M

G

, which is assumed to
converge to some x

1
T 2 L2

[0, 1] in the L2
[0, 1] norm.

(2) Specify the corresponding state to state control prob-
lem CP1 for (A;B) 2 G

sp
1 ⇥G

sp
1 on L2

[0, 1] and choose
a tolerance " > 0.

(3) Find a control law u

1
:= {u

⌧

2 L2
[0, 1], ⌧ 2 [0, T ]}

solving CP1.
(4) Then the convergence of the sequence {xN

T 2
L2

[0, 1]}1
N=1, and Theorem 6 yield N

"

such that xN
T (u

N
) is

within " of x1
T and of xN

T for all N � N
"

under the L2
[0, 1]

norm.

VI. MINIMUM ENERGY LIMIT GRAPHON CONTROL

A specific control law used in Step (2) of the LGCS is
described in this section.

A. Minimum Energy Control of Infinite Dimensional Systems

Define the energy cost by the control over the time horizon
[0, t] as J(u) =

R
t

0 ku
⌧

k2d⌧, (t > 0). The objective is to
drive the system from some initial state x0 2 L2

[0, 1] to
some target state xT 2 L2

[0, 1] using minimum control
energy. A function u

⇤ 2 L2
(0, t;U) is called an optimal

control if J(u⇤
)  J(u), for all u 2 L2

(0, t;U) that drive
the system from x0 to xT.

Theorem 7 ([19]): If the graphon system (A;B) with
WT as its graphon controllability Gramian operater is ex-
actly controllable, then the inverse operator W�1

T exists and
is a bounded operator.

B. Minimum Energy Control Law

Assume the system (A;B) is exactly controllable, then
W

�1

T exists and the optimal control law that achieves the
minimum energy control is given by

u

⇤
⌧

= B

T eA
T (T�⌧)

W

�1
T (xT � eA(T )

x0), ⌧ 2 [0, T ].
(21)

The minimum energy for controlling the system in time
horizon [0, T ] is

kuk22 = [xT � eA(T )
x0]

T

W

�1
T [xT � eA(T )

x0]. (22)

VII. CONTROL OF NETWORK SYSTEMS WITH SAMPLED
WEIGHTINGS

Consider a network system evolving according to the
node averaging dynamics with G

N

describing the dynamic
interactions. Suppose each node has an independent input
channel. Denote the system by (A

N

; I
N

), where A
N

is
the adjacency matrix of G

N

and I
N

is the identity input
mapping. The network system (A

N

; I
N

) with node averaging
dynamics is therefore described by

ẋi

t

=

1

N

NX

j=1

A
Nij

xj

t

+ui

t

, xi

t

, ui

t

2 R, i 2 {1, ..., N}, (23)

where A
Nij

is sampled from the graphon U as follows:
(1) Uniformly sample N distinct points from [0, 1]. Sort the
sample points in the decreasing order of their values and
label them from node 1 to node N . Denote the node set by
V
N

and the value of node i 2 V
N

by v
i

. (2) Connect the
nodes i, j 2 V

N

with edge weight U(v
i

, v
j

) to generate the
network G

N

. Then A
Nij

= U(v
i

, v
j

) is the ijth element of
the adjacency matrix of G

N

.
If U is almost everywhere continuous, then the step

function A

[N]
s of A

N

= [A
Nij

] converges to U in the
L1

[0, 1]2 metric as N ! 1, that is

d
L

1
(A

[N]
s , U) := inf

'2S[0,1]

kA[N]
s � U'k1 ! 0 (24)

as N ! 1, where S[0,1] denotes the set of measure
preserving bijections from [0, 1] to [0, 1] as before. Further
suppose U is bounded, then (24) implies d

L

2
(A

[N]
s ,U) !



0, as N ! 1. It follows that if U is almost everywhere
continuous and bounded, then we can apply LGCS to control
the sampled network systems.

As an example, we consider the case where U(x, y) =

1 � max(x, y) for all x, y 2 [0, 1] and solve the minimum
energy control problem of driving the states of the network
system (A

N

; I
N

) to a Gaussian terminal state distribution
xN

T

from the origin over the time horizon [0, T ].
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Fig. 3. Weighted Graph Generated from U, its Stepfunction and Limit
Graphon U

The systems (U; I) is controllable and the forward con-
trollability Gramian operator is given by

W

T

=

Z
T

0
eU(T�s)eU

T (T�s)ds =

Z
T

0
e2U(T�s)ds. (25)

The minimum energy control for (U; I) is given by

u

⇤
⌧

= eU
T (T�⌧)

W

�1
T xT, ⌧ 2 [0, T ], (26)

Then the control law uN

(·) for a network system (A
N

; I
N

)

generated by U comes from the following approximation:
uN

⌧

(i) = N
R
Pi

u

⇤
⌧

(�)d�, ⌧ 2 [0, T ], where P
i

is the ith

element of the uniform partition PN of [0, 1]. The error
kxT(u)�x

N
T (u[N]

)k2 is bounded as in (20) and converges to
0 as N ! 1. The result of a simulation with a network sys-
tem with 50 nodes using the proposed approximate control
is shown as below.
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VIII. CONCLUSION

We propose a method to approximately control network
systems with node averaging dynamics using the inherent
structural limit described by graphons. Important aspects
requiring further investigations include: (1) the application
of the proposed limit graphon control strategy to asymmetric
network systems where the interactions of dynamics are
described by directed networks; (2) other control problems
such as LQR problem.
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