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Abstract— This paper proposes a family of network cen-
tralities called fixed-point centralities. This centrality family is
defined via the fixed point of permutation equivariant mappings
related to the underlying network. Such a centrality notion
is immediately extended to define fixed-point centralities for
infinite graphs characterized by graphons. Variation bounds of
such centralities with respect to the variations of the underlying
graphs and graphons under mild assumptions are established.
Fixed-point centralities connect with a variety of different
models on networks including graph neural networks, static and
dynamic games on networks, and Markov decision processes.

I. INTRODUCTION

Centrality which quantifies the “importance” or “influ-
ence” of nodes on networks is a useful concept in social
network analysis [1]–[3] and it also finds applications in
biological, technological and economics networks (see e.g.
[3]–[6]). Plenty of centralities with different properties are
defined for different problems (see e.g. [7], [8]), such as,
degree centrality, eigencentrality [9], Katz-Bonacich cen-
trality [10]–[12], PageRank centrality [13], Shapley value
[14], closeness centrality [15], betweenness centrality [16],
diffusion centrality [17], among others. These centralities
provide a collection of different quantitative measures for the
“importance” or “influence” of nodes on networks associated
with various application contexts. For instance, the quality
of a website may be modelled by the PageRank centrality
[13], the importance of individuals on social influence net-
works may be reflected by eigencentrality in [9], equilibrium
actions of certain static network games correspond to Katz-
Bonacich centrality [6], contribution values in a coalition
game may be represented by Shapley values [14], and so
on. Many social, technological and biological networks are
growing and varying in terms of nodes and (or) connections
and hence centrality values may vary accordingly. Properties
of such variations of centrality values with respect to the
variations of graphs (see [18]) motivate the current work. A
second motivation is to identify a suitable centrality notion
for dynamic game problems on networks and graphons
([19]–[22]). A third motivation is the search of a class of new
centralities for centrality-weighted opinion dynamics models
proposed in [23].

Shuang Gao is with the Simons Institute for the Theory of Com-
puting at University of California, Berkeley, CA, USA, 94720. Email:
shuang.gao@berkeley.edu, sgao@cim.mcgill.ca.

The author would like to thank Peter E. Caines and Minyi Huang for
valuable discussions and feedback on this work, and thank Matthew O.
Jackson for conversations about several important references related to this
work and for sharing his insights.

The author gratefully acknowledge the supported by the U.S. ARL and
ARO grant W911NF1910110, the U.S. AFOSR grant FA9550-19-1-0138,
and the Simons-Berkeley Research Fellowship.

A. Related work

The formulation of fixed-point centrality in this paper
follows the idea of the seminal work on graph neural network
models ([24], [25]) in using fixed points of some underlying
mappings associated with networks. Fixed-point characteri-
zations find applications in many problems in data science,
including graph neural networks ([24], [25]), implicit neural
networks ([26]–[29]), deep equilibrium models [30], among
others [31]. A first salient feature of fixed-point centralities
that distinguishes themselves from these models above is
that permutation equivariance properties must be satisfied.
Another salient feature of fixed-point centralities is that
the values of fixed-point centralities are restricted to real
numbers to allow natural rankings of the nodes and are
restricted to non-negative numbers to allow interpretations
(after normalizations) as probability distributions. Further-
more, the current paper focuses on variations of the fixed
point (centralities) with respect to the variations of graph
structures and weights, which differs from [24]–[30].

Centralities and graph neural networks are respectively
generalized in [18] and [32] to those for infinite graphs
characterized by graphons (developed in [33]–[35] to char-
acterize dense graph sequences and their limits). The work
[18] studies the eigencentrality, PageRank centrality, Katz-
Bonacich centrality of symmetric graphs generated from
graphons and establishes the rate of convergence of these
centralities to the associated graphon centralities. The fixed-
point centrality for graphon in the current paper provides a
unified view towards these centralities. The graphon versions
of graph neural networks as approximations or generalization
models of graph neural networks are proposed and ana-
lyzed in [32]. One modelling difference is that the graphon
neural networks are characterized by layered structures in
[32] whereas in the current paper fixed-point equilibrium
structures are employed.

B. Contribution

We propose the “fixed-point centrality”, which is a class
of centralities that can be constructed via a (permutation
equivariant) fixed-point mapping associated with the under-
lying graph. This class of centralities unifies many different
centralities (including PageRank centrality, eigencentrality,
and Katz-Bonacich centrality) and furthermore it connects
to a variety of different problems including graph neural
networks [24], and LQG mean field games on networks [20].
In addition, fixed-point centralities are applicable to a broader
class of graphs, whether they are undirected or directed,
unweighted or weighted (with possibly negative weights),
finite or infinite. Moreover, variation bounds of fixed-point
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centralities with respect to the variations of the underlying
graphs are established under mild assumptions following a
rather simple idea based on fixed-point analysis.

Notation: R and R≥0 denote respectively reals and non-
negative reals. For A ∈ Rn×n, G(A) denotes the graph with
the adjacency matrix A and the node set [n] , {1, ..., n}.
G(V,E) denotes the graph with vertex set V and edge set
E ⊂ V ×V . For a vector v ∈ Rn, span(v) , {αv : α ∈ Rn}.
1n denotes the n-dimensional column vector of 1s and 1
denotes the function defined over [0, 1] with 1α = 1 for all
α ∈ [0, 1]. We use the word “network” to refer to an intercon-
nected group or system where the connection structures along
with weights can be characterized by some graph G(A).
For a vector v ∈ Rn, diag(v) denotes the n × n diagonal
matrix with the elements of v on the main diagonal, [v]i (or
vi) denotes the ith element of v, ‖v‖p , (

∑n
i=1 |vi|

p
)
1/p

with 1 ≤ p < ∞, and ‖v‖∞ , maxi∈[n] |vi|. For a matrix
A ∈ Rn×n, [A]ij (or aij) denotes the ijth element of A and
‖A‖p , supv∈Rn,v 6=0

‖Av‖p
‖v‖p with 1 ≤ p ≤ ∞. We note that

‖A‖1 = max1≤j≤n
∑m
i=1 |aij | and ‖A‖2 =

√
λmax (A∗A).

II. PRELIMINARIES ON CENTRALITIES

A centrality for a network characterized by a graph
G(V,E) is a mapping ρ : V → R≥0 that provides a
quantification of “importance” or “influence” of nodes on
the network. It is worth emphasizing that the “importance”
or “influence” of nodes on networks is defined differently
under different application contexts. Hence for the same
graph structure and graph weights, various centralities can
be defined and may be very different from one another. The
choice of the range R≥0 from centralities allows a natural
ranking of nodes. The fundamental idea of centralities is
to summarize the information about a two-variable function
characterized by a graph (or a matrix) into a one-variable
function characterized by a centrality (or a vector).

We review several centralities related to the current paper.

A. Centralities for Finite Networks
Consider a graph G(A) with non-negative adjacency ma-

trix A = [aij ] ∈ Rn×n. Depending on A, the graph G(A)
may be directed or undirected, and weighted or unweighted.
(E1) Eigencentrality (proposed in [9]): Assume the largest

eigenvalue λ1 of A is simple (i.e. λ1 has multiplicity 1).
Then the eigencentrality of G(A) is given by

ρi =

[
lim
k→∞

( 1

λ1
A
ᵀ
)k

1n

]
i

, i ∈ [n].

An equivalent form in terms of local connections is

ρi =
1

λ1

N∑
j=1

ajiρj , i ∈ [n], i.e. ρ =
1

λ1
A
ᵀ
ρ.

(E2) Katz-Bonacich centrality with α ∈ (0, 1) (proposed in
[10] and generalized in [11], [12]): Let α < ‖A‖−1

2 .
One (simplest) Katz-Bonacich centrality is given by

ρi =

∞∑
k=0

n∑
j=1

αk[Ak]ji =

[ ∞∑
k=0

αkA
ᵀk
1n

]
i

, i ∈ [n],

where the upper bound of α ensures the boundedness
of the infinite series. An equivalent form in terms of
local connections is given by

ρi = α

n∑
j=1

ajiρj + 1, i ∈ [n], i.e. ρ = αA
ᵀ
ρ+1n,

and the equivalent explicit form is ρ = (1−αAᵀ)−11n.
(E3) PageRank centrality (proposed in [13]): Consider a

network of webpages, where each node represents a
webpage, and aji = 1 if there is a hyperlink from
webpage j to i and aij = 0 otherwise [13]. PageRank
centrality with α ∈ (0, 1) is given by

ρi = α

n∑
j=1

aji
ρj
dj

+
1− α
n

, dj =

n∑
i=1

aji, i ∈ [n],

where α
aji
dj
ρj + (1 − α)n−2 is the probability of

jumping from node j to node i in the steady state
of the associated random walk. In equivalent forms,
PageRank centrality ρ satisfies

ρ = αA
ᵀ
D−1ρ+

1− α
n

1n, with D , diag(d1, ..., dn)

and the explicit computation form is given by

ρ =
1− α
n

(I − αAᵀD−1)−11n.

PageRank centrality can be interpreted as the steady
state distribution of random walks on the network.

B. Centralities for Graphons

Graphons are defined as bounded symmetric measurable
functions A : [0, 1]2 → [0, 1], which, roughly speaking,
can be viewed as the “adjacency matrix” of graphs with
the vertex set [0, 1] (see [36]). Let W0 denote the set of
graphons with the range [0, 1]. A graphon A ∈ W0 can
be interpreted as an integral operator (for instance from
L2([0, 1]) to L2([0, 1])) as follows:

(Av)(·) =

∫
[0,1]

A(·, α)vαdα, v ∈ L2([0, 1]).

The definitions of eigenvector, PageRank and Katz-Bonacich
centralities for graphons in [18] are summarized below.
Consider a graphon A ∈ W0.

(E4) The graphon eigencentrality for A is given by

ρ =
1

λ1
Aρ, (Aρ)(·) ,

∫
[0,1]

A(·, α)ραdα,

where ρ denotes the eigenfunction in L2([0, 1]) associ-
ated to the largest eigenvalue λ1 of A and λ1 is assumed
to have multiplicity 1.

(E5) The graphon Katz-Bonacich centrality with α ∈ (0, 1)
for A is defined by one of the equivalent forms:

ρ =

∞∑
k=1

αkAk1, ρ = (I − αA)−11, or ρ = αAρ+ 1

where α < 1
λ1

and λ1 is the largest eigenvalue of A.



(E6) The graphon PageRank centrality with α ∈ (0, 1) for A
is given by

ρ = αA�D−1ρ+ (1− α)1, A ∈ W0, (1)

where D(x) =
∫

[0,1]
A(y, x)dy, and (A�D−1)(x) =

A(x,y)
D(y) if D(y) 6= 0, and zero otherwise. Equivalent

representation forms are as follows: ρ = (1 − α)(I −
αA�D−1)−11 and ρ = (1−α)

∑∞
k=0

(
αA�D−1

)k
1.

Proposition 1 The graphon PageRank centrality ρ with α ∈
(0, 1) is a probability density function over [0, 1]. 2

PROOF From the equivalent form ρ = (1−α)
∑∞
k=0

(
αA�

D−1
)k
1, we obtain that ρ(x) ≥ 0 for all x ∈ [0, 1] for

A ∈ W0. Furthermore, based on (1), we verify that

〈1, ρ〉 = 〈1, αA�D−1ρ〉+ (1− α)〈1,1〉 = 1.

Thus ρ is a probability density. �

III. FIXED-POINT CENTRALITY FOR FINITE NETWORKS

A permutation matrix is a square matrix that has exactly
one element of 1 in every row and every column and 0s
elsewhere. An n×n-dimensional permutation matrix Pπ can
be obtained by permuting the rows of an n×n identity matrix
according to the permutation map π : [n] → [n]. For any
permutation map π : [n] → [n], its associated permutation
matrix Pπ is orthonormal, that is, P ᵀπPπ = I .

Definition 1 (Permutation Equivariance) A mapping
f(·, ·) : Rn×n ×Rn → Rn is permutation equivariant with
respect to a permutation map π : [n]→ [n] if

Pπf(A, ρ) = f(PπAP
ᵀ
π , Pπρ), ∀ρ ∈ Rn, ∀A ∈ Rn×n

where Pπ is the permutation matrix corresponding to π.
A mapping f(·, ·) : Rn×n × Rn → Rn is permutation
equivariant if it is permutation equivariant with respect to
all permutation maps π : [n]→ [n]. 2

Definition 2 (Permutation Invariance) A mapping f(·, ·) :
Rn×n ×Rn → Rn is permutation invariant with respect to
permutation map π : [n]→ [n] if

f(A, ρ) = f(PπAP
ᵀ
π , Pπρ), ∀ρ ∈ Rn, ∀A ∈ Rn×n

where Pπ is the permutation matrix corresponding to π. A
mapping f(·, ·) : Rn×n×Rn → Rn is permutation invariant
if it is permutation invariant with respect to all permutation
maps π : [n]→ [n]. 2

Similarly, a mapping g(·) : Rn → Rn is permutation equiv-
ariant (resp. permutation invariant) if Pπg(ρ) = g(Pπρ)
(resp. g(ρ) = g(Pπρ)) for all ρ ∈ Rn and all permutation
maps π : [n]→ [n].

Permutation equivalence and permutation invariance are
important properties of many functions associated with
DeepSets [37] and graph neural networks [38]. Consider a
network, the structure of which is characterized by a graph
G(A) with the adjacency matrix A ∈ Rn×n (which may have
negative weights) and the node set [n]. S denotes a set of

nodal features and Sn denotes its n-fold Cartesian product.
Let Sn be associated with a metric d.

Definition 3 (Fixed-Point Centrality) A centrality ρ :
[n] → R≥0 is a fixed-point centrality for G(A) associated
with the feature space (Sn, d) if there exists a permutation
equivariant mapping f(·, ·) : Rn×n × Sn → Sn, a permu-
tation equivariant mapping g(·) : Sn → Rn≥0, and a unique
x ∈ Sn under the metric d such that

x = f(A, x), x ∈ Sn,
ρ = g(x), ρ ∈ Rn≥0.

(2)
2

We note the (symmetric or asymmetric) adjacency matrix
A = [aij ] of G(A) is allowed to have non-negative elements.
The choices of f and g are contingent to the network ap-
plication context and hence different fixed-point centralities
may be associated with the same underlying graph G(A).

The existence of the fixed-point feature is assumed in the
definition of fixed-point centrality, which, with extra assump-
tions, can be established via various fixed-point theorems
[39] (see, for instance, [40] based on Kakutani fixed-point
theorem and [25] based on Banach fixed-point theorem). The
uniqueness of the fixed-point feature depends on the proper-
ties of both A and f , as it is determined by f(A, ·) : Sn →
Sn. Thus, for the same permutation equivariant mapping
f(·, ·), a different A may result in the non-uniqueness (or
even non-existence) of the fixed-point feature. To enforce
uniqueness of the fixed-point feature (when it exists), one
way is to select a suitable feature set S along with the metric
d for the product space Sn such that uniqueness is defined up
to equivalent classes (see Remark 1 below for an example).

Remark 1 (Linear Case) When S is a vector space and
f(A, ·) is a linear function from Sn to Sn (that is, f(A, x1 +
x2) = f(A, x1) + f(A, x2) and f(A,αx1) = αf(A, x1)
for any x1, x2 ∈ Sn, α ∈ R) for any A ∈ Rn×n, the
unique x ∈ Sn in (2) should be interpreted as the unique
1-dimensional subspace, or in other words, x ∈ Sn is unique
up to its linear span; a formal way to have the uniqueness is
to extend the feature vector space Sn to the Grassmannian
Gr(1, Sn) (i.e. the space of 1-dimensional linear subspaces
in Sn) and use a distance for Gr(1, Sn) (see e.g. [41]). 2

Fixed-point centralities can be viewed as a specialization
of graph neural network models in [24], [25] to the case
where outputs are characterized by non-negative reals and
initial nodal labels there are homogenous. Centralities inR≥0

naturally allow ranking nodes according to their centrality
values, whereas in general outputs of graph neural networks
require extra constructions to allow such ranking.

A. Examples of Fixed-Point Centrality

Proposition 2 Eigencentrality, Katz-Bonacich centrality,
and PageRank centrality are fixed-point centralities. 2

PROOF The proof is by identifying the functions f and
g following the definition of fixed-point centrality. The
mapping g in (2) is specialized to the identify mapping
from Rn → Rn (i.e. ρ = x) for Katz-Bonacich centrality,



PageRank centrality and eigencentrality. For Katz-Bonacich
centrality, f(A, x) = αAᵀx + 1n, α ∈ (0, ‖A‖−1

2 ). We
observe that ‖αAᵀ‖2 < 1 and hence f(A, ·) for Katz-
Bonacich centrality is a contraction from Rn to Rn under
the vector 2-norm. For PageRank centrality, α ∈ (0, 1),
f(A, x) = αAᵀdiag(Aᵀ1n)−1x + 1−α

n 1n. We note that
‖αAᵀdiag(Aᵀ1n)−1‖1 = α < 1 and hence f(A, ·) for
PageRank centrality is a contraction under vector 1-norm
from Rn to Rn. The existence and uniqueness of fixed-
point features for these two cases above are immediate via
Banach fixed-point theorem. For the case with eigencen-
trality, the largest eigenvalue λ1 of A is assumed to have
multiplicity 1, and the permutation equivariant mapping is
f(A, x) = 1

λ1
Ax. The fixed-point feature x is unique up to

its linear span as f(A, ·) is a linear function from Rn to Rn

(see Remark 1). The permutation equivariance properties of
functions f(·, ·) for these centralities can be easily verified.�

Proposition 3 Any eigenvector corresponding to a nonzero
simple eigenvalue of A is a fixed-point centrality for G(A).2

Proofs are omitted as readers can readily verify the result.
We emphasize that the choice of S in (2) can be very

general: it can be a set of vectors, matrices, functions,
probability distributions, strings, etc. Below we give an
example where S is the space of continuous functions from
[0, T ] to Rq denoted by C([0, T ];Rq) with q ≥ 1.

Proposition 4 The equilibrium nodal cost of LQG Network
Mean Field Games [21, Sec. IV-B] with homogenous initial
conditions, if the unique equilibrium exists, is a fixed-point
centrality. 2

PROOF Following [21, Prop. 1], the network mean field
trajectory denoted by z = (z1, ...., zn)ᵀ with zi(t) ∈ Rq
for t ∈ [0, T ] on a network with n nodes satisfies

z = Φ(A, z), z ∈ (C([0, T ];Rq))n,

where C([0, T ];Rq) denotes the space of continuous func-
tions from [0, T ] to Rq (endowed with the sup norm) and
the permutation equivariant mapping

Φ(·, ·) : Rn×n × (C([0, T ];Rq))n → (C([0, T ];Rq))n

is characterized by a forward-backward coupled differential
equation pair [21, Prop. 1]. The equilibrium nodal cost is

ρi = J(zi), zi ∈ C([0, T ];Rq), i ∈ [n]

with the same J(·) : C([0, T ];Rq)→ R+ ∪ 0 for all nodes.
Hence it satisfies the definition of fixed-point centrality. �

We omit the details of the problem formulation of LQG
Network Mean Field Games which requires significant space.
Interested readers are referred to [21, Sec. IV-B].

B. Properties of Fixed-Point Centrality

An automorphism of a (directed or undirected) graph
G(V,E) is a permutation map π : V → V that satisfies

(i, j) ∈ E if and only if (π(i), π(j)) ∈ E, ∀i, j ∈ V.

Proposition 5 Any fixed-point centrality of a graph G(V,E)
is permutation invariant with respect to any automorphism
map of G(V,E). 2

PROOF Let A denote the adjacency matrix of G(V,E). Let
Aπ , P ᵀπAPπ and xπ , Pπx, where Pπ is the permutation
matrix corresponding to the permutation map π : [n]→ [n].
By the definition of an automorphism π, A = Aπ (that is, the
adjacency matrix does not change), and hence the fixed-point
feature x given by x = f(A, x) satisfies that

xπ = f(Aπ, xπ) = f(A, xπ).

In the definition of fixed-point centrality, such fixed-point
feature is assumed to be unique. Then x = xπ . That is, an
automorphism does not change the fixed-point features and
hence does not change the fixed-point centrality ρ = g(x).�

A vertex transitive graph is a graph G satisfying that for
any given node pair (i, j), there exists some automorphism
map φi,j ∈ Π such that φi,j(i) = j, where Π denotes the
set of permutation mappings π : [n] → [n]. See [42] for
examples of vertex transitive graphs.

Proposition 6 (Vertex Transitive Graphs) All nodes of a
vertex transitive graph share the same fixed-point centrality
value, that is, any fixed-point centrality for a vertex transitive
graph is permutation invariant. 2

PROOF Following Prop. 5 and the definition of vertex tran-
sitive graphs, we obtain, for each i, j ∈ [n], there exists
some φi,j ∈ Π1, such that the fixed-point features satisfy
xi = xφi,j(i) = xj . This implies that xi = xj for all
i, j ∈ [n]. Finally, the permutation equivariance of g(·) in
(2) leads to the desired result. �

Properties in Prop. 5 and Prop. 6 are general properties
shared by all existing centralities that depend only on graph
structures. These properties may not hold in general for the
outputs of graph neural network models ([24], [25]).

C. Centrality Variations with Respect to Graph Variations

Consider two graphs G(A) and G(B) with the same
number of nodes. Let ρA be a fixed-point centrality for G(A)
and ρB that of G(B) with the same function f(·, ·), that is,

xA = f(A, xA), ρA = g(xA),

xB = f(B, xB), ρB = g(xB),
(3)

where Sn is specialized to Rn, and f(·, ·) : Rn×n ×Rn →
Rn and g(·) : Rn → Rn. (The specialization of Sn to Rn

is for the simplicity of presentation, and it can be relaxed
to any normed vector space). In this section we study the
conditions under which ρA and ρB are close and establish
upper bounds of their differences.

Let Uf ⊂ Rn denote the set of feasible fixed-point features
with f(·, ·) in (3). Consider the following assumption.

1There may be one φi,j for each node pair (i, j) instead of one φ for
all node pairs.



Assumption (A1): (a) There exists L1 > 0 such that for all
x ∈ Uf ,

‖f(A, x)− f(B, x)‖ ≤ L1‖A−B‖op, (4)

where the operator norm ‖A‖op , supv∈Rn,v 6=0
‖Av‖
‖v‖ ;

(b) For any matrix A and for any x ∈ Uf , there exists
L0(A, x) ≥ 0 such that

‖f(A, xA)− f(A, x)‖ ≤ L0(A, x)‖xA − x‖ (5)

where xA = f(A, xA);
(c) For the given matrix A,

L0(A) , sup
x∈Uf

L0(A, x) < 1;

(d) There exists Lg > 0 such that for all x, v ∈ Uf ,

‖g(x)− g(v)‖ ≤ Lg‖x− v‖.

We call (A1)-(c) the Contraction Condition for Fixed-Point
Centrality for G(A); if, furthermore, Uf is complete under
the chosen norm ‖ · ‖, it then gives the existence of a unique
fixed-point feature for f(A, ·) following Banach fixed-point
theorem, and one can simply apply fixed-point iterations to
identify such fixed-point feature with the given graph G(A).

Remark 2 (Different Choices of Norms) We note that ‖·‖
can take any vector ‖ · ‖p norm, 1 ≤ p ≤ ∞, as long as the
operator norm ‖·‖op in (A1)-(a) is compatible with the chosen
vector norm (that is, ‖ · ‖op = supv∈Rn,v 6=0

‖Av‖p
‖v‖p ). 2

For Katz-Bonacich centrality, we choose 2-norm and
L0(A) = α‖A‖2 < 1 if α < ‖A‖−1

2 . For
PageRank centrality, we choose 1-norm and L0(A) =
α‖Aᵀdiag(Aᵀ1n)−1‖1 < 1 if α < ‖Aᵀdiag(Aᵀ1n)−1‖−1

1 .

Remark 3 (Fixed-Point Centrality in the Linear Case)
The condition L0(A) < 1 in (A1) is not satisfied under ‖·‖2
norm for the (normalized) eigencentrality, as L0(A) = 1
for eigencentrality. To establish the error bound, further
spectral properties of the graphs are required (see e.g. [18]
via rotation analysis of eigenvectors by perturbations [43]).
In general, for fixed-point centralities where f(A, ·) is a
linear function, one should establish the difference of two
1-dimensional subspaces characterized by span(xA) and
span(xB). Such difference can be characterized by the
angular difference between the two subspaces as follows:

d(xA, xB) =

∣∣∣∣cos−1

(
|〈xA, xB〉|
‖xA‖2‖xB‖2

)∣∣∣∣
which is a specialization of a Grassmann distance (see [41])
to 1-dimensional subspaces (i.e. Grassmannian Gr(1,Rn)).
For characterizing such differences between xA and xB when
B differs from A by a small perturbation, one may employ
the error estimation results in [43]. 2

Theorem 1 Under Assumption (A1) for the fixed-point cen-
trality (3), the following holds

‖ρA − ρB‖ ≤
L1Lg

1− L0(A)
‖A−B‖op. (6)

2

PROOF Following the definition of the fixed-point centrality
and Assumption (A1)(a)-(A1)(c),

‖xA−xB‖ = ‖f(A, xA)− f(B, xB)‖
≤ ‖f(A, xA)− f(A, xB)‖+ ‖f(A, xB)− f(B, xB)‖
= L0(A)‖xA − xB‖+ L1‖A−B‖op.

Hence subtracting L0(A)‖xA − xB‖ and then dividing by
(1− L0(A)) on both sides yield

‖ρA − ρB‖ ≤
L1

1− L0(A)
‖A−B‖op. (7)

Then employing the condition in Assumption (A1)-(d) yields
the desired result. �

Remark 4 If f(A, ρ) does not depend on ρ, then the fixed-
point centrality is trivial and the centrality variation upper
bounds above should be treated differently. Such examples
include degree, closeness and betweenness centralities. 2

Centralities can be associated with probability distributions:
PageRank centrality is the steady state distribution of random
walks on the graph of hyperlinks [13], and degree centrality
is used as the probability distribution for forming new
connections [44]. To (uniquely) associate the fixed-point
centrality with a probability (mass function), we consider
the following assumption.

Assumption (A2): The fixed-point centralities are normal-
ized with nonnegative entries, that is,∑

i∈[n]

ρi = 1, ρi ≥ 0, ∀i ∈ [n].

Clearly, this implies ‖ρ‖1 ,
∑n
i=1 |ρi| = 1.

Remark 5 (Normalization of Centralities) If a centrality
c does not satisfy the condition (A2) above, it can be
normalized via ρi = ci∑n

i=1 ci
, i ∈ [n]. This normalization is

useful to associate any centrality with a probability distribu-
tion. For instance, the degree centrality with normalization
ρi = di∑n

i=1 di
where di =

∑n
j=1 aij , i ∈ [n], is used in

scale-free network models [44] to represent the probability
of forming new connections. In general, one can introduce a
monotone function φ(·) : R→ R≥0, such that

ρi =
φ(ci)∑n
i=1 φ(ci)

, i ∈ [n].

When φ(·) = exp(·) (or φ(·) = exp(−·)), it is then special-
ized to the softmax function (or the Boltzmann distribution
that maximizes an associated entropy). Such normalizations
can be incorporated into the permutation equivariant mapping
g(·) in the definition of fixed-point centrality in (2). 2

For a metric space (X , d) and p ≥ 1, let Pp(X ) denote
the set of all probability measures on X with finite pth
moment. The p-Wasserstein distance between two probability
measures in Pp(X ) is defined as follows:

Wp(ρA, ρB) =

(
inf

γ∈Γ(ρA,ρB)

∫
X×X

d(x, y)pdγ(x, y)

) 1
p



where Γ(ρA, ρB) denotes the set of probability measures on
X × X with marginals ρA and ρB .

Proposition 7 Under Assumptions (A1) and (A2), the fol-
lowing holds for the fixed-point centrality in (3):

Wp(ρA, ρB) ≤ L1Lg
1− L0(A)

inf
π∈Π
‖Aπ −B‖op,p, (8)

where the matrix operator norm is ‖A‖op, p , ‖A‖p. 2

PROOF Recall from Theorem 1 that

‖ρπ
∗

A − ρB‖p ≤
L1Lg

1− L0(A)
‖Aπ

∗
−B‖op,p, (9)

where π∗ = arg minπ∈Π ‖Aπ − B‖op, p. Furthermore, one
can verify that

Wp(ρA, ρB) ≤ ‖ρπ
∗

A − ρB‖p,

since π∗ is just a particular transport map. We obtain the
desired result by combining the two inequalities above. �

When p = 2, the operator norm ‖A‖op,2 is the maximum
singular value of A. Consider the matrix cut norm [45]

‖A‖2 , max
S×T⊂[n]×[n]

∣∣∣ ∑
i∈S,j∈T

aij

∣∣∣, A ∈ Rn×n (10)

(without the scaling factor 1
n2 used in [36, p.127]).

Lemma 1 The following inequality holds for any symmetric
matrix A = [aij ] with elements |aij | ≤ 1:

‖A‖op,2 ≤
√

8‖A‖2, A ∈ Rn×n. 2

PROOF For any symmetric matrix A, the norms ‖A‖op, 2
and ‖A‖2 scaled respectively by 1

n and 1
n2 correspond

to those graphon norms ‖A‖op and ‖A‖2 in [36] for
the stepfunction graphon A with uniform partitions as-
sociated with A, where, with an abuse of the notation,
‖A‖2 , supS,T⊂[0,1]

∣∣∣∫S×T A(x, y)dxdy
∣∣∣ and ‖A‖op ,

supv∈L2([0,1])
‖Av‖2
‖v‖2 . Since ‖A‖op ≤

√
8‖A‖2 holds for

any graphon in A ∈ W1 (see [46, Lem. E.6 and Eqn. (4.4)]
or [18, Lem. 7]), we obtained the desired result. �

Replacing the operator norm by the cut norm in Prop. 7 via
the inequality in Lemma 1 yields the following result.

Proposition 8 Consider two symmetric matrices A and B.
Assume (A1) and (A2) for the fixed-point centrality (3) hold.
If |aij | ≤ 1 and |bij | ≤ 1 for all i, j ∈ [n], then

W2(ρA, ρB) ≤ L1Lg
1− L0(A)

√
8δ2(A,B) (11)

where δ2(A,B) , infπ∈Π ‖Aπ − B‖2, ‖A‖2 ,

maxS×T⊂[n]×[n]

∣∣∣∑i∈S,j∈T aij

∣∣∣ and Π denotes the set of
all permutations from [n] to [n]. 2

IV. FIXED-POINT CENTRALITY FOR INFINITE NETWORKS

Graphons are useful in characterizing and comparing
graphs of different size and defining limits of (deterministic
or random) graph sequences. This section extends the fixed-
point centralities to those for graphons.

A. Fixed-Point Centrality for Graphons

Let Wc denote the set of symmetric measurable functions
W : [0, 1]2 → [−c, c] with c > 0. Let S[0,1] denote the
infinite Cartesian product of S with the index set [0, 1]. Let
d denotes the metric for S[0,1]. Similar to the finite graph
case, a centrality for a graphon with the vertex set [0, 1] is
defined as the mapping ρ : [0, 1]→ R≥0 which characterizes
the “importance” of nodes on the infinite network associated
with the underlying graphon.

Definition 4 (Permutation Equivariant Operator) An
operator f(·, ·) : Wc × S[0,1] → S[0,1] is permutation
equivariant with respect to a measure preserving bijection
π : [0, 1]→ [0, 1] if

f(A, ρ)π = f(Aπ, ρπ), ∀ρ ∈ S[0,1], ∀A ∈ Wc (12)

where Aπ(α, β) , A(π(α), π(β)) and ρπ(α) , ρ(π(α)) for
α, β ∈ [0, 1]. An operator f(·, ·) : Wc × S[0,1] → S[0,1] is
permutation equivariant if it is permutation equivariant with
respect to all measure preserving bijections π : [0, 1] →
[0, 1]. 2

Definition 5 (Permutation Invariant Operator) An oper-
ator f(·, ·) : Wc × S[0,1] → S[0,1] is permutation invariant
with respect to a measure preserving bijection π : [0, 1] →
[0, 1] if

f(A, ρ) = f(Aπ, ρπ), ∀ρ ∈ S[0,1], ∀A ∈ Wc, (13)

where Aπ(α, β) , A(π(α), π(β)) and ρπ(α) , ρ(π(α))
for α, β ∈ [0, 1]. An operator f(·, ·) : Wc × S[0,1] → S[0,1]

is permutation invariant if it is permutation invariant with
respect to all measure preserving bijections π : [0, 1] →
[0, 1]. 2

Similarly, a mapping g(·) : S[0,1] → S[0,1] is permu-
tation equivariant (resp. permutation invariant) if for all
measure preserving bijections π : [0, 1] → [0, 1], g(ρ)π =
g(ρπ) (resp. g(ρ) = g(ρπ)).

Definition 6 (Graphon Fixed-Point Centrality) A
centrality ρ : [0, 1] → R≥0 is a fixed-point centrality
for a graphon A ∈ Wc associated with the feature space
(S[0,1], d) if there exists a permutation equivariant fixed-
point mapping f(·, ·) : Wc × S[0,1] → S[0,1], a permutation
equivariant mapping g(·) : S[0,1] → R≥0, and a unique
function x ∈ S[0,1] under the metric d, such that

x = f(A,x),

ρ = g(x), ρα ≥ 0, α ∈ [0, 1].
(14)

2

We note that the “uniqueness” of x in the definition above
depends on the choice of S[0,1] and the underlying metric
d, and it could mean an equivalent class of functions. For
example, if we choose S = R and let the set R[0,1] be en-
dowed with Lp([0, 1]) norm, then the unique x ∈ Lp([0, 1])
is interpreted as the equivalent class up to discrepancies on
sets with Lebesgue measure zero. Another such example,
similar to the finite graph case, is that the “uniqueness” of



x when f(A, ·) is a linear mapping shall be interpreted as
the unique subspace spanned by x (see Remark 1).

Proposition 9 Graphon eigencentrality, graphon Katz-
Bonacich centrality, and graphon PageRank centrality are
graphon fixed-point centralities. 2

Proposition 10 Any eigenfunction of a graphon operator
from L2([0, 1]) to L2([0, 1]) corresponding to a non-zero
simple eigenvalue is a graphon fixed-point centrality. 2

Proposition 11 The equilibrium nodal cost of LQG
Graphon Mean Field Games [21, Sec. IV-C] with homoge-
nous initial conditions, if the unique equilibrium exists, is a
graphon fixed-point centrality. 2

In LQG Graphon Mean Field Games [21, Sec. IV-C], the
product set S[0,1] is specialized to C([0, T ]; (L2([0, 1]))q),
where q ≥ 1 is the dimension of the local state of agents.
Proofs of these propositions follow similar arguments as
those in the finite network case, and hence are omitted.

B. Centrality Variations with Respect to Graphon Variations

Consider two graphons A and B in Wc, and let ρA and
ρB be respectively their fixed-point centralities as in (14),
that is,

xA = f(A,xA), ρA = g(xA),

xB = f(B,xB), ρB = g(xB),
(15)

where the feature space S[0,1] is specialized to Lp([0, 1]) with
p ≥ 1, and the operators f(·, ·) and g(·) are specialized to
f(·, ·) :Wc×Lp([0, 1])→ Lp([0, 1]) and g(·) : Lp([0, 1])→
Lp([0, 1]). Let Uf ⊂ Lp([0, 1]) denote the set of feasible
fixed-point features associated with f(·, ·) in (15). Consider
the following assumption.

Assumption (A3): (a) There exists L1 > 0 such that for all
x ∈ Uf ,

‖f(A,x)− f(B,x)‖ ≤ L1‖A−B‖op, (16)

where the operator norm ‖A‖op , supx 6=0,‖x‖<∞
‖Ax‖
‖x‖ .

(b) For any graphon A ∈ Wc and x ∈ Uf , there exists
L0(A,x) ≥ 0 such that

‖f(A,xA)− f(A,x)‖ ≤ L0(A,x)‖xA − x‖ (17)

where xA = f(A,xA).
(c) For the given graphon A,

L0(A) , sup
x∈Uf

L0(A,x) < 1.

(d) There exists Lg > 0 such that for all x,v ∈ Uf ,

‖g(x)− g(v)‖ ≤ Lg‖x− v‖.

Theorem 2 Under Assumption (A3) for the graphon fixed-
point centrality (15), the following holds

‖ρA − ρB‖ ≤
L1Lg

1− L0(A)
‖A−B‖op. (18)

2

The proof essentially follows the same lines of arguments as
those for Theorem 1.

Assumption (A4): The graphon fixed-point centrality ρ
satisfies ∫

[0,1]

ραdα = 1 and ρα ≥ 0, (19)

that is, ‖ρ‖1 ,
∫

[0,1]
|ρα|dα = 1.

Proposition 12 Under Assumptions (A3) and (A4), the fol-
lowing holds for the fixed-point centrality in (15):

Wp(ρA, ρB) ≤ L1Lg
1− L0(A)

inf
φ∈Φ
‖Aφ −B‖op,p, (20)

where Φ denotes the set of all measure preserving bijections
from [0, 1] to [0, 1] and the operator norm is ‖A‖op, p ,
supx 6=0,x∈Lp([0,1])

‖Ax‖p
‖x‖p . 2

Proposition 13 Consider two graphons A and B in W1.
Assume (A3) and (A4) for the graphon fixed-point centrality
(15) hold. Then the following holds

W2(ρA, ρB) ≤ L1Lg
1− L0(A)

√
8δ2(A,B). (21)

where δ2(A,B) , infφ∈Φ ‖Aφ − B‖2 and ‖A‖2 ,

supS,T⊂[0,1]

∣∣∣∫S×T A(x, y)dxdy
∣∣∣, and Φ denotes the set of

all measure preserving bijections φ : [0, 1]→ [0, 1]. 2

Proofs follow similar arguments as those in Prop.7 and 8.

Remark 6 Any finite undirected graphs can be represented
by stepfunction graphons [36, Chp.7.1] and hence the char-
acterization of centrality variations applies to finite graphs
as well. Moreover, finite graphs of different size can be
compared via their graphon representations as well as the
associated fixed-point centralities. Thus, for the undirected
graph case, the results above in Prop. 12 and 13 generalize
those in Prop. 7 and 8.

V. CONCLUSION

The notion of the fixed-point centrality proposed in the
current paper is useful in at least the following ways: (a) it
helps identify properties for a large family of centralities and
apply similar analysis techniques (e.g. in studying changes
of centralities with respect to graph perturbations); (b) the
well-established theoretical and numerical results of fixed-
point analysis can be readily employed for such centralities;
(c) learning and training methods can be readily applied to
approximate fixed-point centralities due to its close connec-
tion with graph neural networks ([24], [25]).

The connection of fixed-point centrality with LQG mean
field games on networks suggests collective multi-agent
learning of centralities from the equilibrium cost for (dy-
namic or repeated) game problems. Fixed-point centralities
are also related to certain Markov decision processes if each
state is viewed as a node and the value function (typically
characterized by the fixed-point of the Bellman operator)
is then a mapping from the vertex set to non-negative real
number. Details will be discussed in future extensions.



The representation of sparse graph sequences and limits
requires extra concepts (e.g. graphings for bounded degree
graphs [36] and Lp graphon for sparse W -random graphs
[47]). Future extensions should formulate fixed-point central-
ities for sparse graph limit models. Other important future
directions include: (a) improving upper bounds for centrality
variations by exploring further properties of the permutation
equivariant mappings; (b) axoimatizing fixed-point centrali-
ties via extra properties of f(·, ·), g(·), and the feature space
S similar to that in [8]; (c) analyzing the change of the
ranking properties of fixed-point centralities with respect to
modification on networks; (d) exploring variational analysis
of fixed-point centralities where the underlying graphs are
characterized by vertexon-graphons [48].
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