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Abstract

Graphon Mean Field Games (GMFGs) [4] constitute generalizations of Mean Field Games for which the agents
form subpopulations associated with the nodes of large graphs. The work in ([10], [11]) analyzed the stationarity
of equilibrium Nash values with respect to node location for large populations of non-cooperative agents with linear
dynamics on large graphs together with their limit graphons. That analysis is extended in this investigation to agent
systems lying in the class of control affine non-linear systems (see [15]). Specifically, control affine GMFG systems
are treated where (i) at each node α ∈ V the drift of each generic agent system is affine in the control function, and
(ii) the running costs at each node α ∈ V ⊂ Rm are exponentiated negative inverse quadratic (ENIQ) functions of
the difference between a generic state and the local graphon weighted mean Zα,µG , where µG := {µβ, β ∈ V ⊂ Rm}

is the globally distributed family of mean fields. Infinite cardinality node and edge limits are considered where it is
assumed that the limit graphon g(α, β), (α, β) ∈ V × V, is continuous. It is shown that the Nash equilibrium value Vα

is stationary with respect to the node location α ∈ V if and only if the corresponding mean Zα,µG is stationary with
respect to node location.

Keywords: Mean field games, networks, graphons

1. Introduction

Mean Field Games on graphons is a developing area
within the Mean Field Control and Games domain,
see for example [3], [4], [17], [9], [21], [7], [22]. The
models used in this work generalize those used in stan-
dard Mean Field Game theory (see e.g. [5, 6]), where
the agents are essentially coupled on complete graphs
with uniform weights. This paper employs the Graphon
Mean Field Game theory framework introduced in [3],
[4] and is focused on the existence and the properties of
critical nodes, that is to say nodes at which the solution
to the GMFG equations give value functions which
are stationary with respect to the graphon parameter.
Such nodes constitute stationary Nash value nodes over
the infinite limit graph of node locations for games
involving large populations of agents distributed over
large networks. Initially, [10, 11, 2] analyzed the
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stationarity of equilibrium Nash values with respect to
node location for large populations of non-cooperative
agents controlling linear quadratic Gaussian (LQG)
systems on large graphs together with their limits,
termed graphons. As a follow-up, [12] studied the link
between the optimality of nodes and their degrees in
the network where degree is interpreted in a suitable
limit sense. The initial analysis is extended in this
investigation to agent systems lying in the class of
control affine non-linear systems (see [15]) with what
are termed exponentiated (negative inverse quadratic)
(ENIQ) functions.

Consider models of large population games, for
which the N agents Ai, 1 ≤ i ≤ N < ∞, are distributed
over the finite network, represented by the graph Gk de-
fined by its adjacency matrix (gk

i, j)i, j=1:Mk . We assume
that, at each node of this graph, there is a cluster of
agents and let XGk =

⊕Mk

l=1{X
i|i ∈ Cl} denote the states

of all agents in the total set of clusters of the popula-
tion. Hence N =

∑Mk
l=1 |Cl|. All spatially distributed clus-

ters lie at the nodes of the graph Gk and interact via the
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weighted averages (1) defined by the finite graph Gk.
For each agentAi, whose cluster is denoted by C(i), the
coupling term (also called the local graphon weighted
mean field term) governing its interaction with other
players via the network is given by:

Zi,Gk
t =

1
Mk

Mk∑
l=1

gk
C(i),l

1
|Cl|

∑
j∈Cl

χ(X j
t ), ∀t ∈ [0,T ]. (1)

The specification of the χ-modified mean field {Zi,Gk
t ; t ∈

[0,T ]} at the node Gk relies on the local modified mean
fields χ(X j

t ) and the sectional information gk
i,• of Ai.

Here all the individuals residing in the same cluster
Cl, including the agent’s local cluster C(i), are sym-
metric and their average generates an overall impact on
each agent Ai in the ith cluster via the local graphon
weighted mean field term as shown in (2) below.

The state evolution of the collection of N agents
Ai, 1 ≤ i ≤ N < ∞, is specified by a set of N con-
trol affine stochastic differential equations (SDEs) over
a finite horizon of duration T, 0 < T < ∞. For each
agentAi, at some node the state evolution is given by

dXi
t =
(
a(Xi

t) + bui
t + c(Xi

t)Z
i,Gk
t
)
dt + σdW i

t ,

∀t ∈ [0,T ],
(2)

where a(·), c(·) are continuously differentiable bounded
functions, and σ > 0. These conditions will be strength-
ened as needed below to obtain the main results. Here
Xi

t ∈ R denotes the state, ui
t ∈ R the control input

and Zi,Gk
t the local graphon weighted mean field spec-

ified in (1). All initial states Xi
0 are independent. Let

{W i, i = 1, · · · ,N} denote a collection of independent
standard Brownian motions defined on a probability
space (Ω,F,P) satisfying the usual conditions.

Furthermore, each agentAi has a cost given by

JN
i (ui, u−i)

B E
∫ T

0

[ r
2

(ui
t)

2 + exp
(
−

q
2
(
Xi

t − γ(t)Zi,Gk
t
)−2
)]

dt,

(3)
where 1 ≤ i ≤ N, γ(t) is a continuous function of
time and u−i denotes the controls of all agents other
than Ai. The two parameters r and q are positive. We
note that the exponentiated negative inverse quadratic
(ENIQ) running cost function on the system state in (3)
vanishes at the origin and is strictly positive, monoton-
ically increasing, infinitely differentiable and bounded
by unity on (0,∞).

The configuration above constitutes a large scale dy-
namic stochastic game. A fundamental notion of a so-
lution for these games is the Nash equilibrium, which is
recalled in the following definition.

Any collection of controls for the large dynamic
stochastic network games denoted (ui∗, i = 1, · · · ,N),
is a Nash equilibrium if and only if, any unilateral de-
viation, from ui∗ to any other control ui, yields a higher
cost. That is,

JN
i (ui∗, u−i∗) ≤ JN

i (ui, u−i∗), ∀i = 1, · · · ,N. (4)

Finding a Nash equilibrium for even a single cluster
in a large model of the type as specified by (2)–(3)
would generally be intractable but for the infinite
population limit problem the theory of Mean Field
Games ([14], [19]) provides an established approach
(see [8]). The associated ϵ-Nash equilibrium results
then yield approximate solutions to the original large
finite population problems.

For non-uniform networks, different formulations
have been given to this problem (see e.g. [3], [4], [17],
[9], [21], [7]) and in the present paper we follow the
Graphon Mean Field Games paradigm ([3], [4]).

In the large scale limit defined here, the number of
nodes, Mk, of Gk tends to infinity and the smallest size
of clusters at each node, minl=1:Mk |Cl|, tends to infinity,
and hence the number of agents, N, also goes to infinity.

For simplicity of analysis we shall assume the limit
measures have distribution functions which possess
continuously differentiable densities, and, as a general
notation for such graphon densities, we write

g : [0, 1]2 −→ [0,∞)
(α, β) 7→ g(α, β).

We provide an example in which one considers a se-
quence of uniform attachment graphs [20], and obtains
the following graphon density (in the limit)

g : [0, 1] × [0, 1] −→ [0, 1]
(α, β) 7→ g(α, β) = 1 −max{α, β},

as illustrated in the figure below
Finally, consider the following inductively defined sequence of graphs (Gn)n. Let G1 = . For n � 2,
construct Gn from Gn�1 by adding one new vertex, then, considering each pair of non-adjacent vertices in
turn, drawing an edge between them with probability 1/n. This is called a growing uniform attachment
graph sequence, and the pixel pictures below come from one particular instance of a such a sequence.
This sequence of graphs almost surely limits to the graphon 1 � max(x, y).

It is finally time to define graphons properly.

Definitions A labeled graphon is a symmetric, Lebesgue-measurable function from [0, 1]2 to [0, 1] (mod-
ulo the usual identification almost everywhere). An unlabeled graphon is a graphon up to relabeling,
where a relabeling is given by an invertible, measure preserving transformation of the [0, 1] interval.
More formally, a labeled graphon W determines the equivalence class of graphons

[W ] =

⇢
W' : (x, y) 7! W

�
'(x), '(y)

� ����
' an invertible, measure

preserving transformation of [0, 1]

�
.

Such equivalence classes are called unlabeled graphons.

It is helpful to think of graphons as edge-weighted graphs on the vertex set [0, 1]. In this sense, the
sequence (Rn)n of instances of random graphs with edge probability 1/2 almost surely limits to the
complete graph on a continuum of vertices, each edge with weight 1/2. Also, note that any graph gives
rise to several labeled graphons via its various pixel pictures and that each of these graphons correspond
to the same unlabeled graphon.

This viewpoint also allows us to extend homomorphism densities to graphons in an intuitive way. This
will allow us to see how the limit of the graph sequence (Rn)n, the constant 1/2 graphon, solves the
minimization problem from the previous section.

For a finite graph G, the value t( , G) may be computed by giving each vertex of G a mass of 1/n and
integrating the edge indicator function over all ordered pairs of vertices. In complete analogy, the edge
density of a graphon W is given by the expression

t( , W ) =

Z

[0,1]2
W (x, y) dxdy.

It is not hard to see then that

t( , W ) =

Z

[0,1]4
W (x1, x2)W (x2, x3)W (x3, x4)W (x4, x1) dx1dx2dx3dx4.

It is straightforward from here to write down the formula for the homomorphism density t(H, W ) of a
finite graph H into a graphon W .

Finally, in the case of W ⌘ 1/2 as the limit graphon of (Rn)n, we see that t( , W ) = 1/2 and
t( , W ) = 1/16, solving the minimization problem from the previous section elegantly.

4

Figure 1: Graph Sequence Converging to its Limit [20]

Parallel to the standard MFG formulation, the infinite
population of agents at all graphon nodes, α ∈ [0, 1],
admits representative agents, whose state evolution is
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given by control affine SDEs as the limiting form of (2)
above:

dXα
t =
(
a(Xα

t ) + buαt + c(Xα
t )Zα,g

t
)
dt + σdWα

t ,

∀t ∈ [0,T ], ∀α ∈ [0, 1],
(5)

where (Wα
t )t∈[0,T ] is a standard Brownian motion and

σ > 0 is the noise intensity. The initial state Xα
0 has

probability distribution µα(0, dx). Note that no form of
stochastic process along the interval {α ∈ [0, 1]} is de-
fined in this paper.

In the large scale limit, each representative agent in-
dexed by α ∈ [0, 1] minimizes a cost function given by

J(uα, µ)

B E
∫ T

0

[ r
2

(uαt )2 + exp
(
−

q
2
(
Xα

t − γ(t)Zα,g
t
)−2
)]

dt,

(6)
and at all nodes α ∈ [0, 1], the global mean field term
denoted Zα,g

t , t ∈ [0,T ], is defined as

Zα,g
t B

∫ 1

0

∫
R

g(α, β)χ(x)µβ(t, dx)dβ, (7)

where χ(x) is a bounded, integrable function of x ∈ R
and µβ(t, dx) is the distribution of Xβ

t .

2. The Control Affine Exponentiated Costs GMFG
Equations

In this section, we formalize and describe the solv-
ability of the Graphon Mean Field Games associated
with the control affine exponential costs model intro-
duced in the previous section.

2.1. Formulation of the GMFG Problem

Define the following admissible control space,

A := {u : Ω × [0,T ] 7→ R | u(·) is F − progressively

measurable and E[
∫ T

0 |u(t)|2dt] < ∞},

and the corresponding instance of a Control Affine
(Quadratic Gaussian) Graphon Mean Field Game (CA-
GMFG) problem.

Find a two-parameter family of probability measures
in P2

(
R
)
, denoted µ(α, t), ∀t ∈ [0,T ], ∀α ∈ [0, 1], such

that:

1) Agents’ Control Problems:
There exists α-nodal optimal control laws, denoted

uα,o B (uα,ot )t∈[0,T ] ∈ A for all α ∈ [0, 1], such that

J(uα,o, µ) = min
uα∈A

J(uα, µ) (8)

= min
uα∈A

E
∫ T

0

[ r
2
(
uαt
)2

+ exp
(
−

q
2
(
Xα

t − γ(t)Zα,g
t
)−2
)]

dt

subject to the dynamics for all t ∈ [0,T ]

dXα
t = σdWα

t , (9)
+
(
a(Xα

t ) + buαt + c(Xα
t )Zα,g

t
)
dt

Zα,g
t =

∫ 1

0

∫
R

g(α, β)χ(x)µβ(t, dx)dβ, (10)

where µβ(t, dx) is the distribution of Xβ
t .

2) Consistency Conditions:
The optimal state trajectories (Xα,µ,o

t )t∈[0,T ],∀α ∈
[0, 1], generated in Part 1) satisfy the GMFG
McKean-Vlasov consistency conditions:

µ(α, t) = L
(
Xα,µ,o

t
)
, ∀(α, t) ∈ [0, 1] × [0,T ].

(11)

2.2. Solvability of the Control Affine-GMFG Problem

The analysis in this section establishes that one can
solve the Control Affine GMFG problem via the resolu-
tion of a system of Forward Backward Partial Differen-
tial Equations (FBPDEs) describing the value function
and the probability density function of agents involved
in the Control Affine GMFG problem.

We proceed in a two step approach. Firstly, by fix-
ing probability density functions for the states of the
representative agents we derive the Hamilton-Jacobi-
Bellman (HJB) equations for their value functions to-
gether with the terminal conditions. Secondly, given the
resulting control laws for the representative agents, we
derive the Fokker-Planck-Kolmogorov (FPK) equations
for their probability density functions together with ini-
tial conditions. Subject to the consistency condition
on the generated density functions, these two coupled
sets of equations constitute the entire Controlled Affine
GMFG system.

HJB Equations
We introduce, for all (α, t, x) ∈ [0, 1] × [0,T ] × R

the probability density functions p(α, t, x) satisfying the
condition

dµ(α, t)(x) = p(α, t, x)dx,
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and we define the systems’ Hamiltonians in terms of the
notation introduced above, namely,

H
[
t, x,

∂V(α, t, x)
∂x

,Z, u
]

B
(
a(x) + bu + c(x)Z

)∂V(α, t, x)
∂x

+

[ r
2

u2 + exp
(
−

q
2
(
x − γ(t)Z

)−2
)]
, (12)

with x, u, q,Z ∈ R, γ(·) ∈ C([0,T ]), and V(α, t, x) the
value functions of the representative agents. Applying
the dynamic programming principle, we obtain that the
value functions are given as solutions to the HJB equa-
tions

−
∂V(α, t, x)

∂t
= inf

u∈A
H
[
t, x,

∂V(α, t, x)
∂x

,Zα,g
t , u
]

+
σ2

2
∂2V(α, t, x)

∂x2 ,

=

[
exp
(
−

q
2
(
x − γ(t)Zα,g

t
)−2
)
−

b2

2r

(
∂V(α, t, x)

∂x

)2
+
(
a(x) + c(x)Zα,g

t

)(∂V(α, t, x)
∂x

)]
+
σ2

2

(
∂2V(α, t, x)

∂x2

)
, (13)

V(α,T, x) = 0,

where Zα,g
t is given by

Zα,g
t =

∫ 1

0

∫
R

g(α, β)χ(x)µβ(t, dx)dβ.

FPK Equations
Given the value functions and probability density

functions, {V(α, t, x), p(α, t, x), (α, t, x) ∈ [0, 1]×[0,T ]×
R}, we obtain the following best response controls,
{uα,ot , (α, t) ∈ [0, 1]× [0,T ]}, and the closed-loop states,
{Xα,o

t , (α, t) ∈ [0, 1] × [0,T ]}, for the representative
agents

uα,ot = −
b
r
∂V(α, t, Xα,o

t )
∂x

, Xα,o
t = ξα,

dXα,o
t = σdWα

t

+

(
(a(Xα,o

t ) + c(Xα,o
t )Zα,g

t −
b2

r
∂V(α, t, Xα,o

t )
∂x

)
dt,

and derive the following FPK equations for the prob-
ability density functions associated with the SDEs de-
scribing the closed-loop states,

∂p(α, t, x)
∂t

= −
∂

∂x

[
p(α, t, x)

(
a(x) + c(x)Zα,g

t

−
b2

r
∂V(α, t, x)

∂x

)]
+
σ2

2
∂2 p(α, t, x)

∂x2 ,

(14)

where the initial condition pα(x) B p(α, 0, x) is given.
The coupled FBPDEs (13) and (14) constitute the

Control Affine GMFG equations and their solutions are
given by

{V(α, t, x), p(α, t, x), (α, t, x) ∈ [0, 1] × [0,T ] × R}.

For existence analysis, we introduce the following as-
sumptions.

(A1) The functions a(x), ax(x), c(x), and cx(x) are
bounded continuous functions, and ax, cx are both
in the Hölder space Cγ(R) with Hölder exponent
γ ∈ (0, 1).

(A2) The function γ(t) is continuously differentiable on
[0,T ].

(A3) The initial probability density function pα(x) is
continuous in (α, x) ∈ [0, 1] × R and pα(·) ∈
C2+γ(R).

(A4) χ is bounded, Lipschitz continuous (with Lipschitz
constant Lip(χ)) and∫

R
|χ(x)|dx < ∞.

(A5) g : [0, 1]2 → [0, 1] is measurable function, and g
maps C([0, 1]) to C([0, 1]), i.e., given h ∈ C([0, 1]),
the mapping

α→

∫ 1

0
g(α, β)h(β)dβ, α ∈ [0, 1]

is a continuous function defined on [0, 1].

We will seek the solution of the HJB-FPK equation
system in a suitable Hölder space. For this purpose, we
introduce related Hölder semi-norms and norms.

2.3. Notation
If the function h(x) is defined on a set Q ⊂ Rn, we

denote the norm |h|0;Q = supx∈Q |g(x)| and the Hölder
semi-norm [h]γ;Q = supx,x′ |h(x) − h(x′)|/|x − x′|γ for
γ ∈ (0, 1). If f (t, x) is defined on the set QT = [0,T ]×Q,
define the Hölder semi-norms (see [16])

[ f ]γ/2,γ;QT = sup
(t,x),(s,y)∈QT

| f (t, x) − f (s, y)|
(|t − s|1/2 + |x − y|)γ

,

and

[ f ]1+γ/2,2+γ,QT = [ ft]γ/2,γ;QT +
∑
i, j

[ fxi x j ]γ/2,γ;QT .
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Denote the Hölder norms

|h|γ;Q = |h|0;Q + [h]γ;Q,

| f |γ/2,γ;QT = | f |0;QT + [ f ]γ/2,γ;QT ,

| f |1+γ/2,2+γ;QT = | f |0;QT + | ft |0;QT +
∑

i

| fxi |0;QT

+
∑
i, j

| fxi x j |0;QT + [ f ]1+γ/2,2+γ;QT .

The subscript Q or QT in the norm/semi-norm may be
omitted if it is clear from the context. The Hölder
space Cγ/2,γ(QT ) (resp., C1+γ/2,2+γ(QT )) consists of all
functions with | f |γ/2,γ;QT < ∞ (resp., | f |1+γ/2,2+γ;QT <
∞). The Hölder space C2+γ(Q) is similarly de-
fined with the norm |h|2+γ;Q = | f |0;Q +

∑
i | fxi |0;Q +∑

i, j | fxi x j |0;Q+
∑

i, j[ fxi x j ]γ;Q. We will solve the HJB equa-
tion (13) and the FPK equation (14) in the Hölder space
C1+γ/2,2+γ([0,T ] × R).

We start with an informal description of the solution
procedure for the GMFG. We take a generic coupling
term Z (as a function of (α, t), to be properly speci-
fied later) in place of Zα,g

t and find a unique solution
Vα = V(α, t, x) of the HJB equation and the resulting
best response control law which, in turn determines the
closed-loop state dynamics (using Zα in place of Zα,g),
such that Xα

t has probability density function p(α, t, x).
Subsequently the closed-loop system generates

Zα
1 (t) =

∫ 1

0

∫
R

g(α, β)χ(x)p(β, t, x)dxdβ, (15)

which is written in the compact form

Z1 = Φ(Z)

using a naturally defined operator Φ. Note that the fam-
ily of probability density functions (p(β, t, x))β∈[0,1] in
(15) has been determined using Z. Hence the solution of
the GMFG may be characterized by a fixed point equa-
tion

Z = Φ(Z),

where Z is viewed as a function of (α, t).
We need to specify a set Z that the operator Φ acts

on. Let b0 = b2/r. Following the notation in [13],
we denote C∗T = exp([|ax|0 + |cx|0 · |χ|0]T ), Lipx(L) =
supt∈[0,T ];x∈R,|z|≤|χ|0 Lx(t, x, z), C∗1 = Lipx(L)C∗T T , and
C∗2 = |a|0 + 2b0C∗1 + |c|0 · |χ|0, C∗3 = Lip(χ)(C∗2T 1−γ/2 +
√

2T (1−γ)/2). Now we are ready to specify the setZ con-
sisting of all Z satisfying the two conditions: (i) Z a
continuous function of (t, α) defined on [0,T ] × [0, 1];
(ii)

|Zα(t)| ≤ |χ|0, |Zα(t) − Zα(s)| ≤ C∗3|t − s|γ/2, (16)
∀t, s ∈ [0,T ], α ∈ [0, 1].

OnZ we define the metric

d(Z, Ẑ) = sup
α
|Zα − Ẑα|γ/2;[0,T ].

It is straightforward to show that (Z, d) is a complete
metric space.

Given Z ∈ Z, we fix α ∈ [0, 1] and view Zα as a
function of t to solve the HJB equation (13) to get a
unique solution V(α, t, x), α ∈ [0, 1] (see [13, Theorem
2.3] for details), and subsequently to obtain a unique
solution p(α, t, x) from (14) (see [13, Proposition 2.1]).
Now we define

Zα
1 (t) =

∫ 1

0

∫
R

g(α, β)χ(x)p(β, t, x)dxdβ,

which can be written in terms of an operator Φ:

Z1 = Φ(Z), for Z ∈ Z.

Theorem 2.1. [13, Theorem 4.1] Under Assumptions
(A1), (A2), (A3), (A4) and (A5). The mapping Φ is from
Z to Z, and there exists a constant C0 such that for all
Z, Ẑ ∈ Z, one has

sup
α
|Zα

1 − Ẑα
1 |γ/2;[0,T ] ≤ C0 sup

α
|Zα − Ẑα|γ/2;[0,T ],

where Ẑ1 = Φ(Ẑ).

The constant C0 can be determined using the known
functions and parameters in the model (5)-(6) (see [13]
for details). Under the above assumptions, Theorem
2.1 ensures Φ to be a Lipschitz mapping, and to be
a contraction under suitable conditions (for instance,
C0 < 1 holds when either |c|0 + |cx|0 + [cx]γ + b0 or
supα

∫ 1
0 |g(α, β)|dβ+

∫
R |χ(x)|dx is sufficiently small; see

Remark 4.4 in [13]).
Under a contraction condition, the next theorem ob-

tains a unique solution pair (V, p) to the Control Affine
GMFG equations (13) and (14), where V and p are
each jointly continuous in all the variables (t, x, α),
such that for each fixed α, both Vα and pα are in
C1+γ/2,2+γ([0,T ] × R).

Theorem 2.2. Suppose all assumptions in Theorem 2.1
holds with C0 < 1. Then the GMFG equation
system (13)–(14) has a unique solution (Vα, pα) in
C1+γ/2,2+γ([0,T ]×R)×C1+γ/2,2+γ([0,T ]×R), α ∈ [0, 1].

Proof. Step 1. Given C0 < 1, the fixed point equation
Z = Φ(Z) has a unique solution Z ∈ Z since (Z, d) is
a complete metric space. For each α, taking Zα,g = Zα

in (13) and (14), we obtain a well defined solution pair
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(Vα, pα) in C1+γ/2,2+γ([0,T ]×R)×C1+γ/2,2+γ([0,T ]×R).
This establishes existence.

Step 2. To show uniqueness, suppose (V̄α, p̄α), α ∈
[0, 1], is a solution to (13)–(14). Set

Zα(t) =
∫ 1

0

∫
R

g(α, β)χ(x) p̄(β, t, x)dxdβ.

Then by the definition of the operator Φ, Z is in fact the
unique solution of Z = Φ(Z). So (V̄α, p̄α) is necessar-
ily equal to (Vα, pα) determined in Step 1. This proves
uniqueness. □

3. Critical Nodes for GMFGs

Recall that the global mean field, Zα,g
t , defined by

Zα,g
t B

∫ 1

0

∫
R

g(α, β)χ(x)µβ(t, dx)dβ, (17)

is an interaction term describing the influence of the
limit network on the dynamics of the representative
agents at each node α ∈ [0, 1].

In this section, we consider the particular nodes at
which the first derivative of the global graphon mean
field with respect to α ∈ [0, 1] vanishes, which we call
mean critical nodes.

We introduce another assumption.

(A6) g(α, β) is differentiable with respect to α ∈ [0, 1],
with |gα(α, β)| ≤ Cg for some fixed constant Cg and
all (α, β), and the function gα(·, ·) maps C([0, 1]) to
C([0,T ]), i.e., given h ∈ C([0, 1]), the mapping

α→

∫ 1

0
gα(α, β)h(β)dβ, α ∈ [0, 1]

is a continuous function of α ∈ [0, 1].

Note that we view Zα,g
t as a function of (α, t) ∈ [0, 1]×

[0,T ].

Proposition 3.1. Assume that assumptions (A1)
through (A6) hold and that Φ has a unique fixed
point in Z. Then the partial derivative ∂Zα,gt

∂α
is

defined at each α ∈ [0, 1] and is continuous in
(α, t) ∈ [0, 1] × [0,T ]. Moreover, for each given α, ∂Zα,gt

∂α

belongs to Cγ/2([0,T ]).

Proof. Under the above assumptions, the HJB-FPK
equation system has a unique classical solution. Further,

given (A6), the dominated convergence theorem ensures
that

∂

∂α
Zα,g

t =

∫ 1

0

∫
R

gα(α, β)χ(x)µβ(t, dx)dβ (18)

C ψ(α, t).

We proceed to show continuity of ∂Zα,gt
∂α

. Fix (α, t). Tak-
ing t′ ∈ [0,T ] and α′ ∈ [0, 1], we estimate

|ψ(α, t) − ψ(α′, t′)| ≤ |ψ(α, t) − ψ(α′, t)|
+ |ψ(α′, t) − ψ(α′, t′)|. (19)

For an arbitrary ϵ > 0, under assumption (A6) there
exists δ > 0 such that for all α′ with |α − α′| ≤ δ, one
has

|ψ(α, t) − ψ(α′, t)| ≤ ϵ.

For the second term in the sum in (19), we have

|ψ(α′, t) − ψ(α′, t′)| ≤
∫ 1

0
gα(α′, β)E|χ(Xβ

t ) − χ(Xβ
t′ )|

≤ CgLip(χ) sup
β

E|Xβ
t − Xβ

t′ |. (20)

By boundedness of |a(x)|, |c(x)| and | ∂V(α,t,x)
∂x | (see the es-

timate of supα,t,x |
∂V(α,t,x)

∂x | in [13, Theorem 2.3]), there
exists δ1 > 0 such that for all t′ with |t− t′| ≤ δ1, one has
supβ E|Xβ

t − Xβ
t′ | ≤

1
1+CgLip(χ) ϵ. Therefore, it follows that

|ψ(α, t) − ψ(α′, t′)| ≤ 2ϵ

provided that |α − α′| ≤ δ and |t − t′| ≤ δ1 hold.
To show Hölder continuity, recall that p(β, t, x) is in

C1+γ/2,2+γ([0,T ] × R); then we use the method in [13,
sec 4] to show supt,s |ψ(α, t) − ψ(α, s)|/|t − s|γ/2 < ∞.
This completes the proof of the proposition. □

Definition: Mean Critical Node A node λ ∈ [0, 1] is
a mean critical node for a GMFG system if the follow-
ing local mean field stationarity condition holds for Zα,g

t
at λ ∈ [0, 1],

∂

∂α
Zα,g

t

∣∣∣∣∣
α=λ
= 0, ∀t ∈ [0,T ]. (21)

Definition: α-Nash Critical Node A node λ ∈ [0, 1]
is an α - Nash critical node for a GMFG system if the
following local Nash value stationary condition holds
for Vα,g

t at λ ∈ [0, 1],

∂

∂α
Vα,g

t

∣∣∣∣∣
α=λ
= 0, ∀t ∈ [0,T ]. (22)

For three particular examples of graphons one can
readily identify mean critical nodes and observe that
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they coincide with specific nodes in the family of graphs
whose limits are associated with the graphons as fol-
lows:

E1 Consider first the limit graphon of a sequence of
finite Erdös-Rényi graphs for which the graphon
limit and associated local mean fields are, respec-
tively:

g(α, β) B k ∈ (0, 1), ∀(α, β) ∈ [0, 1]2,

Zα,g
t = k

∫ 1

0
E
[
Xβ,o

t
]
dβ, ∀(α, t) ∈ [0, 1] × [0,T ].

So for all λ ∈ [0, 1]:

∂

∂α
Zα,g

t

∣∣∣∣∣
α=λ
= 0, ∀t ∈ [0,T ].

That is to say, for the graphon limit of Erdös-Rényi
finite graphs all nodes λ ∈ [0, 1] are mean criti-
cal nodes for the associated Control Affine GMFG
problem.

E2 Consider next the uniform attachment graphon:

g(α, β) = 1 −max{α, β}, ∀(α, β) ∈ [0, 1]2.

Then, we can compute that for all (α, t) ∈ [0, 1] ×
[0,T ]

Zα,g
t =

∫ 1

0
(1 −max{α, β})E

[
Xβ,o

t
]
dβ, (23)

= (1 − α)
∫ α

0
E
[
Xβ,o

t
]
dβ +

∫ 1

α

(1 − β)E
[
Xβ,o

t
]
dβ,

Differentiating with respect to the index α yields:

∂

∂α
Zα,g

t = −

∫ α

0
E
[
Xβ,o

t
]
dβ, ∀t ∈ [0, 1]. (24)

from which it follows that for λ = 0 ∈ [0, 1]:

∂

∂α
Zα,g

t

∣∣∣∣∣
α=λ
= 0, ∀t ∈ [0,T ].

That is to say, for the uniform attachment graphon,
the root node is a mean critical node.

E3 As a third example consider the negative exponen-
tiated graphon function

g(α, β) = exp
(
− (αm − βm)

)
, 2 ≤ m, m ∈ N,

∀(α, β) ∈ [0, 1]2.

Then, for all (α, t) ∈ [0, 1] × [0,T ]

Zα,g
t =

∫ 1

0
exp
(
− (αm − βm)

)
E
[
Xβ,o

t
]
dβ,

and differentiating yields for all t ∈ [0, 1]:

∂

∂α
Zα,g

t = −mαm−1
∫ 1

0
exp
(
−(αm−βm)

)
E
[
Xβ,o

t
]
dβ,

and hence for λ = 0:

∂

∂α
Zα,g

t

∣∣∣∣∣
α=λ
= 0, ∀t ∈ [0,T ].

So for the negative exponential graphon functions
with index greater than one, the node α = 0 is a
mean critical node.

These examples indicate that the structure of the net-
works modelled by graph limits play a key role in the
interaction between agents in the associated GMFGs.

4. Stationarity Properties of the Value Functions

Proposition 4.1. Suppose that all assumptions in
Proposition 3.1 hold. Assume c(x) = 0 for all x ∈ R,
γ(t) , 0 for all t ∈ [0,T ], and that the solution to the
Control Affine GMFG problem admits α-Nash critical
nodes λ ∈ [0, 1], that is to say

∂V(α, t, x)
∂α

∣∣∣∣∣
α=λ
= 0, ∀(t, x) ∈ [0,T ] × R. (25)

Then these nodes are mean critical nodes for the Con-
trol Affine GMFG system; namely, at these nodes the
local mean field is stationary:

∂

∂α
Zα,g

t

∣∣∣∣∣
α=λ
= 0, ∀t ∈ [0,T ]. (26)

Conversely, subject to the same conditions, mean field
critical nodes are α-Nash critical nodes, i.e. nodes at
which the Control Affine GMFG value function is sta-
tionary.

Proof. Suppose (25) holds. Differentiating the Con-
trol Affine GMFG equations (13)-(14) with respect to α
yields the function

W(α, t, x) B
∂V(α, t, x)

∂α
, ∀(α, t, x) ∈ [0, 1] × [0,T ] × R,
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as a solution to the PDE:

−
∂W(α, t, x)

∂t
= −qγ(t)

(
x − γ(t)Zα,g

t

)−3

× exp
[
−

q
2

(
x − γ(t)Zα,g

t

)−2] ∂
∂α

(
Zα,g

t

)
+ (a(x) + c(x)Zα,g

t )
∂W(α, t, x)

∂x

+ c(x)
∂

∂α

(
Zα,g

t

)
∂V(α, t, x)

∂x

−
b2

r
∂V(α, t, x)

∂x
∂W(α, t, x)

∂x

+
σ2

2
∂2W(α, t, x)

∂x2 ,

(α, t, x) ∈ [0, 1] × [0,T ] × R

(27)

with terminal conditions

W(α,T, x) = 0, (α, x) ∈ [0, 1] × R.

Once V(α, t, x) has been determined, equation (27)
becomes a linear parabolic equation with coefficients
from a Hölder space, where, in particular, ∂Zα,gt

∂α
has

Hölder continuity in t (see Proposition 3.1). By the
theory of such equations (see [18, p. 320]), (27) has
a unique classical solution Wα in C1+γ/2,2+γ([0,T ] × R)
for given α.

Recalling that c(x) = 0, x ∈ R, we see that at any
given λ ∈ [0, 1] for which

W(λ, t, x) = 0, (t, x) ∈ [0,T ] × R,

the PDE (27) for W(·, ·, ·) takes the form

0 = −qγ(t)
(
x − γ(t)Zλ,g

t

)−3
exp
[
−

q
2

(
x − γ(t)Zλ,g

t

)−2
]

×

(
∂

∂α
Zα,g

t

∣∣∣∣∣
α=λ

)
, (t, x) ∈ [0,T ] × R, (28)

and hence

∂

∂α
Zα,g

t

∣∣∣∣∣
α=λ
= 0, t ∈ [0,T ]. (29)

Consequently λ ∈ [0, 1] is a mean field critical node.
The converse implication of the proposition holds

since the boundary condition for the W(·, ·, ·) function
is

W(α,T, x) =
∂V(α,T, x)

∂α
= 0, (α, x) ∈ [0, 1] × R,

due to the boundary condition on the value function be-
ing V(α,T, x) = 0, (α, t, x) ∈ [0, 1] × [0,T ] × R.

But then setting

∂

∂α
Zα,g

t

∣∣∣∣∣
α=λ
= 0, ∀t ∈ [0,T ], (30)

in the PDE (27) for W(·, ·, ·) results in the unique solu-
tion satisfying

∂V(α, t, x)
∂α

∣∣∣∣∣
α=λ
= W(α, t, x)|α=λ = 0, ∀(t, x) ∈ [0,T ]×R,

(31)
as required. □

This result shows that, under specific conditions,
mean critical nodes can be readily identified as nodes
at which the value functions are stationary. This result
allows for the identification of mean critical nodes di-
rectly from the solutions to the Control Affine GMFG
equations (13) and (14).

5. Conclusion

In this paper a class of Graphon Mean Field Games
with control affine non-linear dynamics and exponenti-
ated negative inverse quadratic (ENIQ) cost functions
has been considered. Under a contraction condition,
the existence and uniqueness of solutions to the relevant
GMFG equations is established. It has been shown that
a node at which the equilibrium Nash value is station-
ary with respect to location is such that the local mean
field is also stationary with respect to location and con-
versely. In future work the analysis will be extended
with analyses of the existence and uniqueness of solu-
tions to those GMFG equations which arise within the
following generalizations: (i) the class of systems where
the dynamics of each agent are also an affine function of
the local mean field, (ii) systems subject to different va-
rieties of running costs, including quadratic and logistic,
and (iii) those resulting from the influence of specified
classes of graphon limits [1] in arbitrary finite dimen-
sions.
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