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Transmission Neural Networks:
Approximate Receding Horizon Control for Virus Spread on Networks

Shuang Gao and Peter E. Caines

Abstract— Transmission Neural Networks (TransNNs) pro-
posed by Gao and Caines (2022) serve as both virus spread
models over networks and neural network models with tuneable
activation functions. This paper establishes that TransNNs
provide upper bounds on the infection probability generated
from the associated Markovian stochastic Susceptible-Infected-
Susceptible (SIS) model with 2™ state configurations where n
is the number of nodes in the network, and can be employed
as an approximate model for the latter. Based on such an
approximation, a TransNN-based receding horizon control
approach for mitigating virus spread is proposed and we
demonstrate that it allows significant computational savings
compared to the dynamic programming solution to Markovian
SIS model with 2" state configurations, as well as providing
less conservative control actions compared to the TransNN-
based optimal control. Finally, numerical comparisons among
(a) dynamic programming solutions for the Markovian SIS
model, (b) TransNN-based optimal control and (c) the proposed
TransNN-based receding horizon control are presented.

I. INTRODUCTION

Epidemic models are important in predicting and mitigating
epidemic spreads, and many different epidemic models have
been proposed and analyzed (see [1]-[6]). For epidemic
spread models over networks, a first thorough system-theoretic
analysis was presented in [7], where the network characterizes
transmission probability rates among different population
groups. Virus spread processes on random directed graphs
were analyzed in [8], and virus spread models on networks
characterized by degree distributions were studied in [9].
Mean field approximations for continuous-time SIS virus
spread models on networks have been developed in [4], [10]-
[12], where mean field states approximate the fractions of
the infected in nodal populations. Continuous-time contact
processes can also model epidemic spreads (see e.g. [5]).

Discrete-time SIS models over networks, closely related
to the current paper, have been investigated by various
researchers. Discrete-time SIS models over networks with
homogeneous transmission probabilities have been proposed
for identifying threshold values for epidemics spread in [13]
and [14]. The nonlinear discrete-time SIS model in [14]
provides an upper bound on the probability of infection
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generated from the discrete-time Markov chain model with
2™ state configurations with n as the number of nodes, and
such a result was established for the case with homogeneous
infection probabilities across all links in [15]. In [16], the
model from [14] was linearized to provide upper bounds for
infection states, and the stability was then analyzed for the
linearized model. The work [17] extended the discrete-time
SIS model from [13], [14] to the case with non-homogeneous
transmission probabilities, obtained a linear dynamic model
that provides an upper bound for the probability of infection,
and then used the linear model to solve vaccine allocation
problems via geometric programming. In the model proposed
in [18], each agent makes a social interaction decision based
on a local awareness that depends on states of other agents,
and an SIS model approximating the stochastic SIS model
over networks with 2™ state configurations was analyzed,
which is a different approximation model from the current
paper. An observer model was proposed for the discrete-
time stochastic SIS model with 2" state configurations for
designing feedback control in [19]. A comparative analysis
of two discrete-time SIS epidemic models (where one is
based on the Euler discretization of the continuous time
SIS model in [10] and the other is a variant of the discrete
time SIS model in [14], [15], [17]) was carried out in [20].
Both models converge to the continuous time SIS model
in [10] with infinitesimal sampling time (see [20], [21]).
The connection between discrete-time SIS models with non-
homogeneous transmission probabilities and neural networks
was established in [21] via TransNNs. In [22], it was shown
that TransNNs enable (approximate) optimal control for virus
spreads with significant computational reductions compared
to dynamic programming solutions for the Markovian SIS
epidemic models. Compared to earlier discrete-time virus
spread models (e.g. [13]-[16], [20]), TransNNs offer more
concise representations of SIS dynamics over networks. In
addition, TransNNs simplify the stability analysis for SIS
models over networks where the transmission probabilities
and connections are potentially heterogenous and time-
varying [21]. All the papers discussed above differ from
the current work either in terms of the models or the results.

As learning models, TransNNs are universal function
approximators and contain trainable activation functions [21].
The key conceptual difference between TransNNs and stan-
dard neural networks is that trainable activation functions
in TransNNs are associated with links, whereas in standard
neural networks, activation functions are typically considered
as a part of nodes (see [23] for detailed explanations). Such
a feature with trainable link functions also appeared in [24].
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Main contributions of the current paper are as follows.
Firstly, the relation between the Markovian stochastic SIS
model with 2" state configurations (over possibly heteroge-
neous and time-varying transmission probabilities) and the
TransNN model is established; more specifically, we prove
that TransNNs provide upper bounds for the probabilities of
infection generated from the stochastic SIS epidemic model
under mild technical assumptions. Secondly, we demonstrated
that TransNNs enable receding horizon control formulations
to mitigate virus spread over (time-varying and random)
networks and allow significant computational reduction
compared to the control solutions based on stochastic SIS
epidemic models with 2" state configurations.

II. VIRUS SPREAD DYNAMICS OVER NETWORKS

Consider a physical (directed) contact network denoted
by (V, EF) with an adjacency matrix Ay = [a};], where V/
is the node set and E¥ C V x V is the edge set at time
k. Let (i,§) € E* denote the direct edge from node j to
node ¢ at time k. Each node of the physical contact network
may represent an individual person and a link between two
persons exists, for instance, if they are within a given distance
for an extended period of time (e.g. within 2 meters for at
least 15mins). For all 7,5 € V, let wfj denote the probability
of node j infecting its neighbouring node ¢ on the physical
contact network given that j is infected at time k, and let
WZ’; € {0, 1} be the binary random variable representing the
successful transmission of virus from node j to node 7 at
time k. For simplicity, let V = [n] £ {1,2,...,n}.

The state of a node ¢ € [n] at time k is denoted by a
random variable X;(k), which takes binary values 0 and 1
with O representing the healthy state and 1 representing the
infected state. The one-step update of the binary random
states for epidemic spread over networks given the current
states (X;(k))ie[n) follows the dynamics
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—Xi(k+1) = - WEX;(k)), Vien] (1

where NP* & {5 : (i,§) € E*} U {i} denotes the (incoming)
neighbourhood set of node ¢ with itself included at time k,
and (V, E¥) denotes the physical contact graph at time k. The
dynamics have the property that for a healthy node to become
infected, the infection needs to come from at least one of
its neighbours, and furthermore the successful transmission
of the virus from one neighbour of node ¢ is sufficient to
infect node <. It is worth highlighting that the inclusion of
self-loops (with the neighborhood represented by Nf* for
node ¢ at time k) is essential in the characterization of the
recovery process in the virus spread dynamics, as the recovery
process is equivalently represented by the self-transmissions
with self-loops.

Let X(k) £ [X;(k)... X, (k)]T € {0,1}" denote the state
configuration at time k and let W* £ [WE] e {0,1}™*".
We introduce the following assumptions.

(A1) At any time k > 0, W* = [W}] is independent of
{Wh:0<t<k}and {X(t):0<t<k}.

(A2) At any time k > 0, the binary random variables
{W} :i,j € [n]} representing the transmissions are
conditionally (jointly) independent given the current
state configuration X (k).

The assumption (A1) ensures that transmissions are inde-
pendent of the history of states and past transmissions, and
(A2) ensures that transmissions are conditionally independent
given the current infection states.

Under (Al), the dynamics @) are Markovian, since

E(=Xi(k + DX (1)) term)
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=E(1 - X;(k+1)|X(k)).
Furthermore, under both (A1) and (A2), we have
E(1 - Xi(k+ DIX(0) =E [T (1= WEX;(0)IX (k)
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which corresponds to the virus spread model (with one-step
update) proposed in [21], since the conditional probability
satisfies

1-pk+ 1) = [] (1-whp®), ichl. @
JENZF
where w Pr(Wk =1|X;(k) =1) and

pi(k) £ E(X;(k)| X (k — 1))

For a state configuration ¢ € {0,1}", the probability of
reaching ¢ is given by

= Pr(X:(k) = 1| X (k — 1)).

Pr(X(k +1) = g| X(k

HPr

where the equality is due to the conditional independence of
the virus transmissions {W}} assumed in (A2).

Proposition 1 (Conditional Probability of Infection [22])
Assume (Al) and (A2) hold. Given the state configuration
at time k denoted by X (k) =z € {0,1}", the transition
probability to a state configuration q € {0,1}" is given by

Pr(X(k + 1) = ¢| X (k) = z)

Pr(X;(k+1) = ¢i| X (k) = z)

1) = ¢ X(k))
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This explicit representation of the transition probability to the
next state configuration given the current state configuration
will be used later in the Markov Decision Process (MDP)
formulation for controlling virus spread over networks (see
Section [V).

III. APPROXIMATION BY TRANSNNS

To derive TransNNs that approximate the virus spread
dynamics (I)), we introduce the following assumptions.
(A3) At time k£ > 0, {WZ; :4,j € [n]} are independent and

for each i, j € [n], W is independent of {X, (k) : £ €
[n], € # j}.
(A4) The events {{X;(k) =1} : i € [n],0 < k < T} are
independent, with 7" as the terminal time.
The assumption (A3) introduces the independence of trans-
missions over different links at the current time & and the
independence of transmissions with respect to the states
except the current state at the sending node. Hence the
assumption (A3) is stronger than the assumption (A2).

Assumptions (Al), (A3) and (A4) together allow us to
write the update of the expected state by taking the (total)
expectation inside the product on the right-hand side as
follows: for ¢ € [n],

E(-X(k+1)=E [] (1-whx,@®)
JENPF
=TI B(1-whx;). ©
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Under (A1), (A3) and (A4), the joint probability distribution
for the random variables {Z;;(k) = 1-W}X;(k),j € Np*}
on the right-hand side is equal to the product of its marginal
distributions. If (A3) and (A4) are not satisfied, the right-
hand side of (6) constitutes an approximation of the joint
distribution by the product of the marginals, referred to as
the naive mean-field approximation [25] or individual-based
mean-field approximation [10].

Let wf7 £ Pr(Wi’; = 1|X;(k) = 1) denote the conditional
probability of the successful transmission of the virus from
node j to node ¢ at time step k. Then

E(1-W5X;(k) = (1 - whEX;(k), Vi,j € [n].
Hence under (Al), (A3) and (A4), the dynamics in (6) lead
to the virus spread model in [21]:

L—pik+1) = [[ (1—whpi(k)), i€,
JENPE

with p;(k) £ Pr(X;(k) = 1) = EX;(k) representing
the (total) probability of node ¢ being infected at time k.
Furthermore, by the nonlinear state transformation

si(k) 2 —log(1 — pi(k)) € [0, 00],

proposed in [21], the equivalent TransNN representation of
is then given by

sik+1) = Z \If(wfj-,Sj(k));

; k
JEN?

i€l ®

with the TlogSigmoid activation function [21]
U(w,z) = —log(l — w4 we™") )

with the activation level w € [0,1] and the input signal
x € [0, 400]. Interested readers are referred to [21], [23] for
detailed properties of the TransNN model and its connections
with standard neural network models.

Thus, in the stochastic model with 2" state configurations
described in (1)), imposing the independence assumptions
(A3) and (A4) together with (A1) leads to the virus spread
model in (7)) and the equivalent TransNN model (8.

Remark 1 (Discussions on Assumption (A4)) Depending
on the actual paths of infection over the networks, the
assumption (A4) may not hold. There are two ways to get
around the assumption on independence in (A4). One way to
break the potential dependence among {X;(k) = 1,i € [n]}
is to observe the states at each time step (i.e. setting the
terminal time in (A4) to 7" = 1 and re-initializing the
dynamics at every time step with the new observations). The
disadvantage of this approach is that we need to observe
or simulate the states at each time step. A similar idea
is used in the context of Restricted Boltzmann Machines
(RBMs) [26] if we interpret the time steps in the current
paper as layers of bipartite graphs in RBMs. Alternatively,
we can sample points from the joint probability distribution
to approximate and simulate the evolutions of the empirical
distributions. The disadvantage is that we must track the
evolution of the empirical joint distribution over a state
space with 2" possible state configurations at each time.
Both approaches may incur significant computational
burden, especially when the underlying network is large and
complex. Instead, the model in can predict approximately
the infection probabilities with lower complexity, using only
the infection status (or probabilities) at the initial time. In
fact, such an approximate model enables the control with low
complexity, which will be presented later in Section O

IV. INFECTION PROBABILITY UPPER BOUND BY
TRANSNNS

In this section, we investigate further the relation between
the state evolution in (I)) and that in (7); more specifically,
we show that without the assumption (A4) the states of the
dynamics in (and equivalently those of TransNNs in (8))
provide upper bounds for the infection probabilities from the
stochastic virus spread model in (I).

Proposition 2 Assume (Al) and (A3) hold. Let X;(k), i €
[n] be the binary state in dynamics (1) and let p;(k) denote
the probability state in dynamics (7). Given the same physical
contact network (V, E*) for all k € IN, the same conditional
transmission probabilities {wf;,i,j € [n],k > 0} and the
same initial infection probability (i.e. p;(0) = Pr(X;(0) = 1)
for all i € [n]), the following inequality holds

pi(k) > Pr(Xi(k) = 1), Vie[n], YkeN;  (10)
if, furthermore, (A4) is satisfied for the dynamics (1)), then

the inequality in (I0) becomes an equality for all k €
{0,1,...,T} and all i € [n]. o



PROOF Define the binary random variable Z;;(k) = 1 —
W[X (k). Then Z;;(k) = 1 represents the event that node i
does not successfully receive virus transmission from node j
at time k. We observe that for any i € [n],

E(1 - Xi(k+1))
=E ] (l—m’ij(k)) 2E [T zk)
JENgE

=Pr((Zij = Djener) = ] Pr(Zi(k) = 1)
JENPF

since the following holds
Pr(Z;;j(k) = 1|(Zie(k) = 1)pescin),exj) = Pr(Zij(k) = 1),

for all subset S € [n] and all 4, j € [n]. That is, conditioning
on node ¢ not successfully receiving virus transmissions from
neighbours other than node j, does not reduce the probability
that node ¢ does not successfully receive virus transmission
from node ] Applying the property above, we obtain that

E(l-X;(k+1)=E [] (1—W;§Xj(k))

JENZF
> H E(l —Wz‘lj‘Xj(k)) (11)
JENZ*
=11 (1 —wij]EXj(k))
JENPF

where w;; = Pr(W;; = 1|X; = 1) denotes the conditional
probability of the successful virus transmission from node j
to node ¢ given that node j is infected. Thus we obtain

EX(k+1) <1- [] (1—wij1EXj(k)), Vi € [n]. (12)
JENZH

Firstly, we note that this inequality is element-wise (i.e. it

holds for each i € [n]). Starting from the initial condition

pi(0) = EX;(0) for all ¢ € [n], we obtain p;(1) > EX;(1)
for all i € [n]. Secondly, we observe that the function

f(yla---ayn) £ 1- H (1 —wuy])

JENPF

(13)

corresponding to the right-hand side of (12) is monotonically
increasing with respect to y; for all j € NPk, Thus,

pi(2)=1- [] (1 - wijpj(1)>
JENgE
>1- [] (1 - wileXju)) >EX;(2), Vi€ n].
JENZF

Thus by induction we obtain p;(k) > EX;(k) for all ¢ € [n],
for all k£ € N. Finally, since the state X; € {0, 1} is binary,
we obtain EX; (k) = Pr(X;(k) = 1) and hence (I0). n

'In fact, this is the case even when X;(k) for all i € [n] are not
independent. A similar argument was used in [10]. Such an argument holds
for Susceptible-Infected-Susceptible (SIS) virus spread models and it may
not hold in general for Susceptible-Infected-Recovered (SIR) models.

A similar inequality holds for Shannon information con-
tent (of being healthy). Consider the state transformation
(see [21)]):

T(p) = —log(1 —p) € [0, 00],

The state transformation above is bijective (from [0, 1] to
[0, o0]) and monotonically increasing with respect to the input.
Taking T(EX;) as the state of node 4, then the dynamics in
(T2) leads to the following upper bound dynamics

T(EX;(k+1)) < Z U(w;;, T(EX;(k)))
JENgZE

Vp € [0, 1].

in terms of the evolution of the Shannon information content
(of being healthy). Then by Proposition [2] we obtain that

si(k) > T(EX;) £ —log(1 — EX;), (14)

that is, the states following the TransNN dynamics in (8)
provide an upper bound for the information content of being
healthy for node ¢ € [n]. Then taking the inverse mapping of
T on both sides, we obtain the following result.

Proposition 3 Assume (Al) and (A3) hold. Let X;(k), i €
[n] be the binary state in dynamics (1) and let s;(k) denote
the information content state in dynamics §)). Let s;(0) =
—log(1 — Pr(X;(0) = 1)) € [0, +00] for all i € [n]. Given
the same physical contact network (V, E*) for all k € N,
the same conditional transmission probabilities {wfj, 1,] €
[n], k > 0}, the following inequality holds

Pr(X;(k) =1) <1—exp(—si(k)), Vie[n], Yk € N;
(15)
if, furthermore, (A4) is satisfied for the dynamics (1)), then
the inequality in becomes an equality for all k €
{0,1,...,T} and all i € [n]. o

Remark 2 Under (Al) and (A3), the Markovian dynam-
ics (I) have an absorbing state configuration where all nodes
are healthy. It implies that when the time runs sufficiently
long, all nodes will eventually become healthy. However,
when the number of nodes n is large, the time required for
the infection to end can be extremely long, and in such cases
the expected mixing time can be analyzed instead, which
depends on the network connectivity [15]. O

Since the TransNN model () and the equivalent virus
spread model (7) are less conservative than the associated
linear approximation of the SIS epidemic model (see the
proof of [21, Thm. 1]), simpler but more conservative upper
bounds for the probability of infection can be obtained below.
Proposition 4 ([22]) Ler X;(k) be the binary state for node i
at time k in the dynamics (I). Let A = [a};] denote the
adjacency matrix of the physical contact network and §j, =
[wfj] denote the matrix of the conditional probabilities of
transmissions, at time k. Assume (A1) and (A3) hold. Then
Sor all i € [n], the following holds

Pr(X;(k) =1) < [(Ax © Q) ... (Ao © Qo) p(0)]:

where the initial condition is 11(0) = [u1(0), ..., un(0)],
1i(0) £ Pr(X;(0) = 1), and © is the Hadamard product. o



V. CONTROLLING VIRUS SPREAD BASED ON TRANSNNS

Let the control u;(k) € {0,1} represent the individual-
level interventions that reduce the susceptibility of node ¢ to
infection at time k; more specifically, at time k, u;(k) = 1 if
individual ¢ undertakes protective measures (e.g. vaccination,
sanitization or the use of protective equipment) and w; (k) = 0
otherwise. Assume the control (i.e. the protective measure)
reduces 1 — 3 of the infection probability with 3 € [0, 1]. For
a control action u(k) £ (uy(k)...un,(k))T, the controlled
transmission probabilities are then given by

mi (ui (k) £ wi(k)w; B+ (1—ui(k))wiy, Vi, j € [n]. (16)

In the following, we first introduce MDP solutions for
Markovian SIS dynamics, and then compare them with control
solutions based on TransNNs.

A. MDP Solution for Markovian SIS Dynamics

Consider the stochastic dynamics in (I) with wfj replaced
by the controlled transmission probability mfj (u;(k)), and
the cost below

T-1 T—1
=E> 17 (cX (k) +u(k) £E Y UX(k),u(k))
k=0 k=0

with transition probabilities given by @) and 1,, as the n-
dimensional vector of ones. In this case, the state space
is {0,1}™ and control action space is {0,1}". Let V} :
{0,1}™ — R denote the value function defined by

ukmm E Z (X

ur—1

Vi(z) £ X(k) = .

By Dynamic Programmlng (see e.g. [27]), the value function
satisfies the Bellman equation

Vie(z) = mgn [l(m,u) + Z

z’'e{0,1}"

Pr(z'|z, u)Vii1 (x’)}

where V7 = 0, the transition probability following Proposi-

tion [I) is specified by
Pr(X(k+1) = q|X (k) =

ﬁ (@ipi(k +1) + (1 = a:)(1 = pi(k +1))) an

with p;(k+1) =1 = [T;cner (1

mfj(vi) = viwfjﬁ +(1-

- mfj(vl)xj(k)) and

vi)wlj, Vi, j € [n].

The optimal control is then given by the arguments of the
minima on the right-hand side of the Bellman equation.

(18)

B. Optimal Control based on TransNNs
Consider the same cost (adapted from J;

T-1
Jo =y 1i(cp(k) +
k=0

2An application of Propositionyields that under the same control actions,
if assumptions (A1) and (A3) are satisfied, J1 < J2 holds, and if furthermore
the assumption (A4) is satisfied, J; = J2 holds.

u(k))

where the dynamics are given by (7) with w - there replaced
by m; J( u;(k)). Equivalently, we can use the TransNN model
as the dynamic model

si(k+1)= > Wl (ui(k), s;(k)),

JENPF

with ¥(w,z) = —log(1l — w + we™?) and the cost is then
equivalently given by

T-1
=) 17(c(1
k=0

where exp,(—s(k)) = [exp(—s1(k))...exp(—s,(k))]T de-
notes the element-wise exponential function. The state space
is [0,00]™ and the space of control actions is {0,1}".
Following [22], we proceed to solve the optimal control
problem using the Minimum Principle [27]. Firstly, we
introduce the relaxed optimal control problem with relaxed
control actions in [0, 1]™ (i.e. u;(k) € [0,1] for all ¢ € [n]
and for all £ > 0). Then the Hamiltonian for the relaxed
control problem is given by

i€n], (19)

n expo(_s(k))> + U(k’)%

H(k) = 1T( (1 — expo(—s(k))) + u(k))
+Z)\ E+1) S0 Wb (ui(k)), s5(k) @0
JENDE
and hence the adjoint dynamics are given by
Ni(k) = ce™ i)
2D

+ D Mlb+1)5-

LeENFE

with \;(T) = 0, where N2F = {¢ : (¢,i) € EF} Ui
denotes the outgoing neighborhood of ¢ with itself included,
k (u;(k)) is given by (I8), and

mg;(u
i\I/(mlgi(w(k‘)), si(k)) =

ij
8si
A

1 —mk (ue(k)) + m§, (ue(k))e—si (k)
The optimal control action can be checked node by node
without loss of generality since control actions of different
nodes affect the Hamiltonian in (20) in a decoupled way.
Moreover, it is easy to verify that the Hamiltonian H (k) in
(20) is convex in w;(k) for all 7 € [n] and k > 0. Thus, the
optimal relaxed control action exists and lies either on the
boundary or in the interior. Since the original control action
u;(k) € {0,1} is binary, an (approximate) optimal control is
determined by

AH (k) = H

W (mg; (ue(k)), si(k))

€ [0, mi; (ue(k)))-

(B) s (ky=1 — H(E)|u; (k)=0 (22)

which is explicitly given by

1-— wkﬂ + wk.ﬂefsj (k)
=1— . i i
k)=1— Y X(k+1)log TR S ey
JENPE v v
We note that (i) the log term in the equation above is negative
and (ii) the adjoint process is non-negative based on its



dynamics. Thus, AH;(k) could be either positive or negative,
and the (approximate) optimal control rule that minimizes
the Hamiltonian can be given by

23
otherwise. 23)

To verify that the binary control actions generated using

(23) actually minimize the Hamiltonian, we compare the

. . JH (k) dH (k)

gradient evaluations thx(k):o and W‘Ui(k‘):l along
the trajectories of states and adjoint states generated using
the control (23): if both gradients share the same sign, the
convexity of the Hamiltonian H (k) in u;(k) implies that the
control action that minimizes the Hamiltonian lies on the
boundary and hence given by 23).

The optimal control generated above only provides can-
didates of optimal control solutions since the Minimum
Principle only provides necessary conditions for optimality.
To demonstrate that the solution is globally optimal, additional
verification procedures are required.

C. Receding Horizon Control based on TransNNs

In the receding horizon control formulation, we use
TransNNs to predict the approximate probability of infection
in the future, and update the current state and the current
control each time an observation of the current state p(t) =
p°(t) (or s(t) = s°(t) with s?(t) = —log(1 — p?(t)))
becomes available at time t. The corresponding receding
horizon optimization problem (with shrinking horizons) is
then formulated as follows:

T—1
Js(p°(t),t) = > 17 (ep(k) + u(k)),
k=t

subject to the dynamics given by (7) with p(t) = p°(¢). At
each time step, the optimal control problem over the horizon
{t,t+1,...,T} is solved (via the Minimum Principle) and
only the resulting control action u(t) at time ¢ is applied. The
state for node 4 at time ¢ satisfies that p;(¢) = 1 if infected
and p;(t) = 0 otherwise.

Equivalently, we can use the TransNN model (8) as the
model for dynamics

si(k+1) = > W(mf(ui(k),s;(k), i€ln], 24
JENPF
with ¥(w,z) = —log(1 — w + we™?) and s(t) = s%(t) and
s9(t) = —log(1—p?(t))) for i € [n]. Then the corresponding
receding horizon cost is equivalently given by

T-1
Ta(s°(),8) = Y 11(e(1n — exp(—s(k))) + u(k)),
k=t

where exp, () denotes the element-wise exponential function.
The solution involves solving the following joint equations
over the horizon {¢,t+1,...,T} for all i € [n]

silk+1) = Y W(mf(ui(k)), s;(k))

: k
JEN?

(25)

with s;(¢) = s9(t) and
Ai(k) = ce (k)

0
20 Melk+ g mf e (R), si(h) GO
LeNPE

with \;(T) = 0, where N2* := {¢: (¢,4i) € E¥} Ui denotes
the outgoing neighborhood of 7 with itself included. The
optimal control rule used in solving the joint equations is
given by
, AH;(k)<O0

W @7)
otherwise
with
1— wfjﬁ + wfjﬁe’sﬂ'(k)

k k —s;(k
1—wij+wije 55 (k)

AH;(k) =1-Xi(k+1) > log

JENgSE
forall k € {¢t,t+1,...,7 — 1}. At time ¢, we only apply
the first control action u}(t) for all i € [n].

The state for node ¢ observed at time ¢ satisfies that s;(t) =
+oo if infected and s;(¢) = 0 otherwise. We note that s(t)
may contain +oo at the (updated initial) time ¢, but the cost
function and the states s(k) for k& > ¢ always remain bounded.

This receding horizon control scheme allows us to update
the observations at time ¢ instead of using the evolution of
probabilities given by the TransNN model over the entire
horizon {0,1,...,T} specified in Section The form
of solution is not exactly dynamic programming as in the
MDP solution (in Section as we use the TransNN
dynamics instead of the Markovian dynamics with 2" state
configurations, and it is not exactly following the Minimum
Principle for optimal control over the horizon {0, 1, ..., T} (in
Section|[V-B) as we keep updating the horizon {¢,¢+1,..., T}
as we observe the new infection state at time ¢.

D. Complexity

Compared to the MDP solution, the advantage of the
receding horizon control is that there is no need to compute
the value function over the 2" state configurations. Compared
to the optimal control based on TransNNs, the advantage
of the receding horizon control is that the resulting control
is less conservative as we update the state observation over
time, and its disadvantage is that 7" number of optimal control
problems instead of 1 optimal control problem need to be
solved, over the horizon {0,1,...,T}.

For naive MDP solutions, at each dynamic programming
step, O(23"nd) elementary operations are needed since the
number of state configurations and that of control actions
are both 2" and each evaluation of @) requires O(nd)
elementary operations, where O is notation for the standard
Big-O asymptotic upper bound and d denotes the maximum
(incoming and outgoing) degree over the physical contact
graph ([n], E¥) for all 0 < k < T. Since there are in total
T dynamic programming steps, the complexity of the MDP
solution is O(23"T'nd), and hence is exponential in n and
linear in T" (which is also demonstrated later by the numerical
results in Fig. [6).



For the optimal control based on TransNNs, the solution
involves the computations of the adjoint dynamics, the state
dynamics and control actions, each of which requires O(nT'd)
elementary operations where d denotes the maximum (in-
coming and outgoing) degree over the physical contact graph
([n], E*) for all 0 < k < T. Let nye denote the number
of iteration needed for solving the joint equations (T9), 1)
and @) (for instance, using fixed-point iterations). Then the
complexity in terms of elementary operations is O(nT dnje).

The complexity of the receding horizon control involves
solving similar optimal control problems iteratively over the
horizon {0,1,...,7 — 1}. Hence it involves O(nT?dni)
elementary operations.

VI. NUMERICAL RESULTS

The parameters used in the numerical examples are: 5 =
0.3, T'= 10, ¢ = 200. For the clarity of illustrations, we
select n = 5 (a much larger n is possible for control based on
TransNNs, but not feasible for MDP solutions). The network
structure and transmission probabilities are illustrated in Fig.[T}

Network Structure Transmission Probabilities
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Fig. 1: A network example with 5 nodes (left) and the
transmission probabilities (right) among nodes.
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Fig. 2: Control actions (right) generated from the MDP
control, and actual state realizations (left) the under such
control actions.
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Fig. 3: Control actions (right) generated from TransNN-based

optimal control and the infection probabilities (left) in the
TransNN model under such control actions.
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Fig. 4: States of TransNNs (left) under the TransNN-based
optimal control actions and the adjoint states (right). Brown
squares (left) represent s;(0) = oo which corresponds to
p;(0) = 1. Although s;(0) may be +oo for some i € [n], the
cost and the state s;(k) for all k > 0 and all ¢ € [n] always
remain bounded.
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Fig. 5: Control actions (right) generated from TransNN-based
receding horizon control (see Section [V-C) and one actual
state realization (left) the under such control law.

The state realizations and the control actions in one
simulation under the optimal control from solving the MDP
is given in Fig. 2] The execution time for solving the MDP
problem is 16.72 seconds on a standard MacBookPro laptop.
The probability states of TransNNs and the optimal control
actions generated from controlling TransNNs are shown in
Fig. 3] and the adjoint states and the (information content)
states of TransNNs are shown in Fig. @ The execution time
for solving the TransNN control problem is 0.020 seconds on
the same laptop (which corresponds to a computational time
reduction by about 3 orders of magnitude compared to solving
MDP). The state realizations and the corresponding control
actions generated from the receding horizon control based
on TransNNs are illustrated in Fig. 5} The execution time
for solving the receding horizon control is 0.094 seconds
on a standard MacBookPro laptop (which corresponds to
a computational time reduction by more than 2 orders of
magnitude compared to solving MDP).

From Fig. 2] and Fig. 3] we see that TransNN-based optimal
control actions include all the control actions generated from
MDP solutions, and at the first time step the control actions
under both solution methods are the same. From Fig. [5] and
Fig. 3] we observe that the receding horizon control is less
conservative in terms of control actions and all the control
actions generated from receding horizon control are included
in the TransNN-based optimal control actions.

Both the optimal control and the receding horizon control
are suitable for problems with a large number of nodes (e.g.
for the problem with n = 100, the computation for receding
horizon control based on TransNNs takes about 25.5 seconds
and that for optimal control based on TransNNs about 4.4



seconds). In contrast, using the MDP solution is challenging
since it is not feasible to directly store vectors of length 2100
for the value function on a standard MacBookPro laptop.

Computation Time vs T (n = 5) Computation Time vs n (T = 20)
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spect to the number of nodes n.

Fig. 6: The computation time for three control laws on a stan-
dard MacBookPro laptop: (i) MDP based on Markovian SIS
dynamics, (ii) optimal control (OptCtrl) based on TransNNs
and (iii) receding horizon control (RHC) based on TransNNs.

For all three control laws (i.e. MDP control, TransNN-
based optimal control, and TransNN-based receding horizon
control), the computation time with respect to the problem
horizon and that with respect to the number of nodes are
plotted respectively in Fig. [6a] and Fig. [6b] The computation
time for naive MDP solutions increases exponentially with
respect to the number of nodes and is significantly larger
than control solutions based on TransNNs.

VII. CONCLUSION

This work demonstrates that TransNNs enable approxi-
mate receding horizon control solutions for Markovian SIS
dynamics with 2™ state configurations. It allows significant
computational savings compared to the dynamic programming
solution to Markov decision model with 2™ state configura-
tions, as well as providing less conservative control actions
compared to the optimal control based on TransNNs.

Future work will (a) evaluate the receding horizon control
for TransNNs with different types of control actions, (b)
identify TransNN models with immune (or inhibition) states,
(c) relax the condition (Al) to investigate the case with
non-Markovian dynamics, (d) consider the cases with risk-
aware control cost, (e) explore network structures to simplify
MDP solutions, (f) extend the approximate receding horizon
control for general MDP problems, and (g) use TransNNs
as a framework to explain the computational reductions in
neural networks in treating high dimension problems.
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