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Motivation and Background

Mean field COUp"ngS — Network COUp"ngS (nonhomegenous, pairwise, random)

Graphon theory: model large graphs and graph limits (Lovasz-Szegedy 06", Borgs
et al. 08', 12, Lovasz 12")
Graphon applications:

Dynamical systems: heat equations (Medvedev 14'), coupled oscillators
(Chiba-Medvedev 19'), graphon particle systems (Bayraktar-Wu 20’, Coppini 21')

Static games (Parise-Ozdaglar 18', Carmona et al. 19)
Dynamic games (GMFG Caines-Huang 18',19", 20', Song et. al 20’, Carmona et al. 21, etc.)
Control of large network-coupled dynamical systems (Gao-Caines 17',18',19',20',21')

Network centrality (Avella-Medina et al. 18'), signal processing (Morency et al. 17'),
graph neural networks (Ruiz-Ribeiro-Chamon 19', 20’), epidemic modeling (Gao-Caines 19,
Vizuete-Frasca-Garin 20'), etc.

Mean field games on networks: Huang-Caines-Malhamé 10’, Guéant 15', Camilli-Marchi 16",

Delarue 17’, Lacker-Soret 20’, Feng-Fouque-Ichiba 20’, etc.
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Introduction to Graphons
Graphon Representation of Graphs

Definition (Graphons)

Bounded symmetric Lebesgue measurable functions
W:[0,1]*> — [0,1]
interpreted as weighted graphs with the vertex set [0, 1].

Notation: W :={W:[0,1]> = [0,1]} and W, :={W:[0,1]> = [—c,cl}, ¢ >0

Examples:

mean field coupling: W(x,y) =1

uniform attachment limit: W(x,y) =1— max(x,y)

Uniform attachment graph sequence converges to the limit under the cut metric w.p. 1 (Lovész 12')
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Introduction to Graphons

Compactness of Graphon Space (Lovasz 12')

Cut norm: [Wllg:= sup
S, TClo,1]

Cut metric: 8 (W, V) := ig)f ([W® — V|,

J W(x,y)dxdy‘
SXT

where ¢ is a measure preserving bijections: we (x,y) =W(d(x), d(y)).

Theorem (Compactness (Lovész 12'))

The graphon spaces (W, 85) and (W, 80) are compact. *

By compactness, infinite sequences of graphons will necessarily possess one or more
sub-sequential limits under the cut metric.

*\7\70 (resp. W) is the space of Wy (resp. W ) after identifying equivalent classes of cut distance zero.
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Introduction to Graphons

Graphons as Operators
Operator W : L2[0,1] — L2[0, 1]

Wyl (x) = LO Wi wviade,  ve 12(0,1], W e W,

. 1
Norm relations: g\lwllgp < IWl < [Wllop < W2

Operator [DW] : (L2[0,1])"™ — (L2[0,1])™:

([DW]v)(x) = DJ[OHW(“, B)v(p)dp, VYV« € [0,1].

where D € R™™, W € W, and (L2[0,1])™ £ 12[0,1] x ... x L?[0,1] .

n
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Spectral Properties of Graphons

Graphon operators are Hilbert-Schmidt operators (and hence compact operators).

M € W, has a countable multi-set of non-zero eigenvalues.
(o) (o)
M= Z)\gfgf[, with {A¢} accumulates at 0 and Z A2 = [|M]|3.
=1 =1

where {f;} is the set of orthonormal eigenfunctions

Spectral Decomposition Examples

Mean Field Coupling: M(x,y) =1, (rank-one, fi =1, A; =1)
N

N
Step Functions: M(x,y) £ Z Zﬂpi (X)ﬂpi (y)mij, (rank(M)=rank(M))

=il j=il

1
Uniform Attachment Graphon (Gao-Caines-Huang, arXiv'21):

4 k k
M(x,y) =1—max(x,y) = Z W\@cos (%) V2 cos <%

k=1,35,...

Other examples: finite-rank graphons, sinusoidal graphon, idempotent graphon, power-law type graphon ...
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LQG Graphon Mean Field Games: Dynamics

Individual Dynamcis

dxi(t) = (Axi(t) + Bui(t) + Dzi(t))dt + Zdw;i(t), 1€{1,... K}

xi(t), ui(t), and z;i(t): state, control and network empirical average in R";

{wji, 1 < 1 < K}: independent standard n-dimensional Wiener processes.

Network Empirical Average Influence

Z|

N
. 1 1
Forany i € Cq, zi(t) = qul T Z xj(t)
=1

Cq: set of agents in the q'" cluster (node).
N: total number of such clusters (nodes).
M = [mgel € RN*N . adjacency matrix

N
K= Z [Cql: total number of agents.

q=1
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LQG Graphon Mean Field Games: Cost

Individual Dynamcis

dxi(t) = (Axi(t) + Bui(t) + Dzi(t))dt + Zdw;(t), 1€{1,.. K}

xi(t) and u;(t): state and control in R™;

{wi,1 < 1 < K}: independent standard n-dimensional Wiener processes.

Network Empirical Average Influence z;(t)

For any i € Cq,

Individual Cost
.
Jilwi, us) éEL (i (£) = vi(O1Iy + lui (D 1R) dt + Ellx: (T) = vi(T)IIg,

where vi(t) £ H(zi(t)+n) € R" Q. Qr =20,R>0,
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LQG Graphon Mean Field Games

Nodal Population Limit + Network (Gao-Caines-Huang CDC'21)

Taking the local population limit (i.e. [Cq| — oo for all q € {1, ..., N})

dxo(t) = (Axa(t) + Bug(t) + Dz (t))dt + Zdwa(t), o€ Cq.
T
Joo (e, Vi) :EL (xa(t) = Ve (D)1 + ta () 17) At + Ellxa(T) = va (T,

where v (t) £ H(zo(t) +1).

Network Mean Field Influence z4 (t)

N
1
F t Ce Xe(t) 2 lim —— i (t
e e By el ;mqw xe(t) leclnoo 1G] . % ()
— jECy
Best Response (based on LQG Tracking Solution)
Ua(t) = —R7IBT(Mixa(t) +54(t)), € Cq 1
—TTy = ATTT, + TTLA —TI,BR !B, + Q, Mr = Qr,
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Forward-Backward Joint Equations on Networks
Nodal Population Limit + Network (Gao-Caines-Huang CDC'21)

Forward Equation: (nN dim)

zZ(t) = I, ® (A—BRIBTITy) Z(t) + %M@ Dz(t) — %M@ BR!BTs5(t)
200) = (I ® MIR(0),
(2)

Backward Equation: (nN dim)
(1) = Iy ® (A—BR'BTIT)"5(t) — I, ® (QH —T\D)Z(t) — Iy ® Q¥n

—S
§(T) = H(Z(T) +mn),
3)

where Iy € RNXN identity matrix, Z(t) (t)T)T, and 5(t) and X(t) are defined similarly.

Solution Complexity

1 the exact network structure and weights!
2| solutions to two coupled nN dimensional equations!
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Graphon Dynamical System Approx (cao-caines TAC'20, TCNS'21)

x:(1) x(1) u (1)
1 1 Vectors
=[IN®A+FM®D] : +[IN®B+FW®E] : and

) Matrices
X((N) X((N) u(N)

} } }

% [BI] +E

[BI] +E

L2,10, 11)" functions
and
Step Functions

(L*[0,1])" functions
and
Graphons

¢
ﬁ (

Compactness of graphon space ensures graphon limits exist (LL 21")

L% we l0,1] : piece-wise constant functions in L2[0, 1] with uniform partition.
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Limit Graphon Forward-Backward Joint Equations

Graphon Forward Equation zDyn(s)

a(t) = ([(A —BRIBTI)I + DM)z(t) — [BR!B™MIs(t)

(4)
+(0) = IMJR(0) = |~ M(. B)%p(0)aB, (1) € (L%0.1)"
(Graphon) Backward Equations  sDyn(z)
5(t) = —(I(A — BR™BTTTONT )s(t) + [(QH — T D)Lla(t) + [QHIIn ©
5
s(T) = [QHII(z(T) +n), s(t) € (L?[0,1))™;
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Limit Graphon Forward-Backward Joint Equations

Graphon Forward Equation zDyn(s)

a(t) = <[(A —BRIBTI)I + DM)z(t) — [BR!B™MIs(t)

(4)
2(0) = [IMIZ(0) = LO MC,BI%6(0)aB, (1) € (L20,1)"
(Graphon) Backward Equations  sDyn(z)
5(t) = —(I(A — BR™BTTTONT )s(t) + [(QH — T D)Lla(t) + [QHIIn ©
5

s(T) = [QH7I](2(T) +m), s(t) € (L2[0,11)™;

Answers to questions (Gao-Caines-Huang CDC'21, arXiv'21)

Existence and uniqueness of solution pair (z,s)?
Contraction condition in C([0, T]; (L2[0, 1])™) with uniform norm || - ||c.

Asymptotic between of (z™, sN) to (z,5)7
ls =™l = O {max(M — M lop, [l2(0) — = (0) )}

Note: (z/N),sIN) denotes the piece-wise constant function representation of (Z,5) in C([0, T]; (L%WC [0,1h™)
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Method 1: Subspace Decomposition of Joint Equations

Project s,z into 8™ and (81)™, with 8§ £ span{fy }eeg,

Proposition (Gao-Caines-Huang CDC’21)

If Forward-Backward Eqn. (4) and (5) have a unique classical solution pair (z,s), then

(dimn): zg(t) = , for almost all © € [0,1], for all t € [0, T]

where z%, st and § € C([0, T];R™) are given by
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Method 1: Subspace Decomposition of Joint Eq

uations

Project s,z into 8™ and (81)™, with 8§ £ span{fy }eeg,

Proposition (Gao-Caines-Huang CDC’21)

If Forward-Backward Eqn. (4) and (5) have a unique classical solution pair (z,s), then

(dimn): zg(t) = , for almost all © € [0, 1], for all t € [0, T]

where z%, st and § € C([0, T];R™) are given by

Complexity: d forward-backward equation pairs (n-dim) and 1 ODE (n-dim)

d : number of distinct non-zero eigenvalues of graphon M
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Method 2: Solution based on Operator Riccati Eqn.

Operator Riccati Equation

—P =A(t)"P+ PA(t) + P[DM]—P[BR*B"M]P—[(QH — Iy D)I], P(T) = [QHI]
Q)

where A(t) = (A — BRleTﬂt)H and TT is the solution to (1).

The operator Riccati equation (6) has a unique mild solution*.

Sufficient Condition for Existence and Uniqueness (z,s) (Gao-Caines-Huang CDC'21)
Under (A2), joint equations (zDyn, sDyn) have a unique classical solution pair (z,s).
Features of Operator Ricc. Eqn. (Gao-Caines-Huang CDC'21)

Operator Riccati equation decouple joint equations (zDyn, sDyn)

(A2) is less restrictive than the contraction condition for (zDyn, sDyn)

*That is, P € Cg ([0, T]; £((L2[0,1))™), P(T) = [Q HI], and for all v € (L2[0,1])™,

=
P(t)v = P(T)v + J (A(T]T]P’(T] + P(t)(A(T) + [DM])—P(7)[BR B TMIP(7)—[(QH — rrTDm)vdm
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Method 2: Subspace Decomposition Operator Riccati Eqn.

Corollary (Gao-Caines-Huang CDC'21)
If (A2) holds, then the solution to the operator Riccati equation (6) is given by

P(t) = [PrI] + Y [P —PH(1))eff],  telT] @)
Ledn
dim(n x n) —PL= A (t)TPL + PLA ()= (QH —TID), P(T)= QHr
dim(nxn)  —Pl= A ()TP'+ PUAC(t) + A(D)—AP'BRIBTP!
—(QH—TI,D), PYT)=QtH, (e,

Jx: the index multi-set of non-zero eigenvalues. A (t) := (A —BRIBTIT).

Complexity

1 ODE (n x n) and d Riccati equations (n x n)

d : number of distinct non-zero eigenvalues of graphon M
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LQG-GMFG Performance Analysis

Asymptotic Error ||z — zp ||

Z

,’\’X

zD BR(z)
R

Theorem (Network Empirical Average to Graphon MF, Gao-Caines-Huang CDC'21, arXiv'21)

Assume initial conditions at node q € V. has mean |4 and uniformly bounded
variance. Under the mild technical assumptions the error between the network
empirical average zlg and the graphon mean field z satisfies

1
El|} — 2llc = Of max (IM — MN g5, []2(0) — 2™ (0)lo, ==},

vmingev, [Cql
(8)
where z™ (0) in (L%WC [0,1])™ is the piece-wise constant function representation of

1
the initial condition of the network mean field Z(0) = N MIlpg, .o pn]T.

Note: || - || ¢ denotes the uniform norm for C([0, T]; (L2[0,1])™).

For results with explicit rate of convergence, see (Gao-Caines-Huang arXiv'21).
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Numerical Example 1
Uniform Attachement Graphs

Actual Graph Sturcture Dist of Abs(Eigenvalue)

A random graph instance with 30 nodes generated following the uniform attachment procedure, its
pixel representation and the distribution of modulus of the eigenvalues.

Spectral Decomp. of Uniform Attachment Graphon (Gao-Caines-Huang, arXiv'21)

) At = T i () v (52

k=1,35,...

Approx error by 5 most significant eigendirections: =~ 1% in || - |[op
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Numerical Example 1
Uniform Attachement Graphs

Offset Process s Graphon Mean Field (GMF)

time time

Best Response Empirical GMF

Simulations on the uniform attachment graph example with 30 nodes where each node contains 4
agents and each agent has 2 states.

0 10 0.5 0 0.1 0 1 0
LQG-GMFG Parameters: A = [710 0}, Q= {0 0.5], ST = [0 0.1}'B:D:R:QT: [0 1}'

“:H' H:[é ﬂ,T:l,nzz, N =30, [Col=4 1< C<N.
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Numerical Example 1
Uniform Attachement Graphs

GMF Approximation Error

Network Operator Norm

o
3

I
~

and [MY — M

o
w

100 100 200
[ nPop(4) nState(2) ]

nNode

nNode [ nPop(4) nState(2) ]

The relative error in the graphon mean field decreases as graph sizes increase. 12 simulation
independent experiments are carried out for each size. The nodal population size denoted by nPop is 4, the local

state dimension denoted by nState is 2. In the figure on the right, black dots represent the values for
HMW — M||op in different simulation experiments.
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Numerical Example 2
Random Graphs Sampled from SBM

Dist of Abs(Eigenvalue)

A graph generated from SBM, its pixel diagram and the distribution of the modulus of eigenvalues.

The block matrix of SBM is given by

025 05 0.2
W= |05 035 0.7
02 07 04

Step Function Graphon:
3
=3 5 wilp, (x)Tp, (y), (x,y) € [0,1]2
i=1j=1

rank(M) = rank([wy;]) = 3.
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Numerical Example 2
Random Graphs Sampled from SBM

Offset Process s Graphon Mean Field (GMF)

time

Empirical GMF

Simulation on a network generated from SBM with 30 nodes where each node contains 4 agents and
each agent has 2 states.

0 10 0.5 0 0.1 0 1 (0]
LQG-GMFG Parameters: A = [710 0}, Q= {0 0.5], L = [0 O.J,BfoRfQTf [0 },

”:E' H:[(l) ﬂ,T:l,n:Z N =30, [C¢l=4, 1< <N,
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Numerical Example 2
Random Graphs Sampled from SBM

GMF Approximation Error Network Operator Norm

100 200 100 200
nNode [ nPop(4) nState(2) ] nNode [ nPop(4) nState(2) ]

Graphon mean field game approximation errors on networks of different sizes. 12 simulations are carried
out for each size. The nodal population size denoted by nPop is 4, and the local state dimension denoted by nState

is 2. In the figure on the right, black dots represent values for HM“\” — Ml|op in different simulation experiments.
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Conclusion and Future Directions

Conclusion

Subspace decompositions for solving LQG graphon mean field games.
Sufficient conditions for the existence of a unique LQG-GMFG solution

Asymptotic rate of approximation errors

Future directions

Solution methods for nonlinear problems
General node embedding spaces and embedding mechanism
Network models with local 4+ neighbourhood + global influence

Heterogenous local dynamics

Thank You! Questions!
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Thank You!
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