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Motivation: How to identify “influence network”?

“Influence Network” in opinion dynamics:
(French Jr [1956], DeGroot [1974], Friedkin and Johnsen [1990], and many variants)

Not necessarily the underlying network connection structure!

Heterogenous attentions due to nodal properties:
> News/posts on online platforms (ranks by recommender sys.)
» Opinions of individuals (number of followers)

> Attention to research papers (citation counts)
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Procedure to identify “influence network”

Social structure + Relevant centralities — Influence network

Definition (Network Centrality)

A mapping ¢ : V — R, that quantify how central (or influential) nodes
are in a network, where V is the node set.

One relevant centrality in social networks: Degree centrality
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Zachary’s Karate Club Network zacnary 11977

Social interactions among Karate club members. Conflict between
node 34 (adm) and node 1(ins) split the group into two groups.

| ¥

MaxFlowMinCut: Zachary [1977] all but one member (node 9)
Modularity: Newman [2006] correctly characterizes all nodes

Spectral Partition (no degree weights): All but one member (node 3)
Spectral Partition (with degree weights): Gao CDC’21 correctly characterizes all nodes
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@ Degree-Weighted Opinion Dynamics



Basic Modelling Assumptions

(i) Social Conformity:
Individuals in a social network communicate and change their
own opinions in the direction to conform with those of their
neighbours;

(i) Degree Weighted Influence:
Each individual weights these influences from the neighbours
promotional to their connection degrees.
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Degree-Weighted Opinion Dynamics (Gao cbc21)
Opinion evolution over a social network:

X = Z S o and aij(xj —xi), xi(0) =xip0, icm] (1)
jen, &jeN: ijdj

> N;: the set of neighborhood of node i

> di =) ;cn, aij: the degree (centrality) of node i on the network

v

ayj: social connection between nodes i and j

» 1> 0is a fixed time constant.

dj

The new influence matrix: Ay; = T aod
jeN; dijdj

Shuang Gao (McGill University) Centrality-Weighted Opinion Dynamics: Disagreement and Social Network Partition 517



Degree-Weighted Opinion Dynamics (Gao cbc21)

Denote x = [x1,...,x]". Then
™% =—Lx, x(0)=xo.
where Laplacian matrix L is

L=1,—A, withA =[diag(Ad)]~'Adiag(d),
Different from normalized Laplacian matrices
L. £ [diag(d)]~"(diag(d) — A) = I, — [diag(d)] A,

Len 2 I, — [diag(d)] 2 Aldiag(d)] 2.

Note: L is not necessarily symmetric.
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Spectral Properties of L and A (Gao cbc21)

Assume the underlying graph S(A) with the adjacency matrix A is
connected and undirected.

Properties

(P1): All the eigenvalues of A and L are real.
(P2): A and L are diagonalizable.

(P3): L contains only one zero eigenvalue and all the other
eigenvalues of L are strictly positive.

Laplacian matrix L:

L=1,—A, with A = [diag(Ad)~'Adiag(d).
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Explicit Solutions and Disagreement State
By (P1)&(P3), we can list eigenvalues of Lby 0 = Ay < A2 < ... < A,..
By (P2) (i.e. L is diagonalizable), the opinion evolution (1) is explicit:

Ze% “ui(vixo) 3)

i=1

(A1, vi,wi): (eigenvalue, left-eigenvector, right-eigenvetor)

Note that wy = ﬁl lies in the agreement subspace span(1).

1(PS): L contains only one zero eigenvalue and all other eigenvalues of L are strictly positive.
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Explicit Solutions and Disagreement State
By (P1)&(P3), we can list eigenvalues of Lby 0 = Ay < A2 < ... < A,..
By (P2) (i.e. L is diagonalizable), the opinion evolution (1) is explicit:

Zefé i (vixo) (3)

i=1

(A1, vi,wi): (eigenvalue, left-eigenvector, right-eigenvetor)
Note that wy = ﬁl lies in the agreement subspace span(1).
Disagreement state

n

X () = > ui(vix(t) =) e “Mui(vxo). (4)
i=2 i=2

> The slowest rate of exponential decay' is governed by A»(L) of L.

> Approximate x4t by the eigen triple: (A2(L), vo, up).

1(P3): L contains only one zero eigenvalue and all other eigenvalues of L are strictly positive.
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Partition Alg. (Social Choice Alg.) (Gao cbc21)

(S1) If A2(L) has algebraic multiplicity 1, let
S = Up.

If A2(L) has algebraic multiplicity mp (ma > 2), let
ma
s = Zug(ngxo)
=1

{(A2(D),v5, ub, ), : {(eigenval, left-eigenvec, right-eigenvec)}d
and xq denotes the initial opinion vector.

(S2) The signs of elements in s € R™ separate the nodes in the
network into two clusters as follows:

Cy ={i:s(i) > 0}, Co={i:s(i) < 0L

Note: when A, (L) has algebraic multiplicity 1 this is essentially the Fielder
spectral partition for the new “influence network” G(A).
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Applications to Southern Women Network avs etal. 1sa1)

18 women attended 14 events and the connections among them are
characterized by the number of co-attended events.

MiKatherina

M Myra WOlivia
# Pearl
W Helen
# Dorothy
@Frances WFlora
W Sylvia
@ Theresa
# Ruth
b W Nora

®Eleanor

LAY
®Brenda €me =@ Evelyn

@Charlotte

Our algorithm achieves the same bipartition result except one node
(node Pearl) as those in Davis et al. [1941] and Liebig and Rao [2014].

In contrast, a direct spectral partition of the original graph is far from
the correct assignment!
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Partition into Multiple Clusters

Iterative Bipartition:

Partition the graph into two subgraphs. Then partition each subgraph.
Iterates this procedure.

K-Means:

If the number of partitions is fixed and known beforehand, apply the
standard K-means (Arthur and Vassilvitskii [2006]) 10 {s(i),1 € [n]}. Different
clusters represent nodes with different levels of disagreements.

(For more details, see Gao CDC’ 21.)
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Which centrality is relevant?

Why degree centrality weights work for these two examples?
Different centralities may be relevant for different applications.

Examples:
page-rank centrality, eigen-centrality, Shapley values, betweenness,
etc.
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General Centrality-Weighted Opinion Dynamics

Basic Modelling Assumptions

Basic assumptions for general centrality-weighted opinion dynamics:

(i) Social Conformity:
Individual on a social network communicate and change their
own opinions in the direction to conform with those of their
neighbours;

(i) Centrality-Weighted Influence:
Each individual weights these influences from the neighbours
proporional to the centrality vector p (or time-varying p(t)).
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Degree-Weighted Opinion Dynamics

Centrality-weighted opinion evolution for x = [x1,...,xn]":
% =—L(t)x, x(0)=xg (5)
Laplacian matrix L(t):

[(t)=1In —A(t), with A(t) = [diag(Ap(t))]~'Adiag(p(t)).

> pi(t) > 0: the centrality of node i on the network
> ayj represents the connection between node j and node i
» 1> 0 is an appropriate time constant

The centrality p(-) should be chosen according to the underlying
application problems.
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Spectral Properties of L(t) and A(t)

Assume the underlying graph S(A) with the adjacency matrix A is
connected and undirected.

Properties
(P1): All the eigenvalues of A(t) and L(t) are real.
(P2): A(t) and L(t) are diagonalizable.

(P3): L(t) contains only one zero eigenvalue and all the other
eigenvalues of L(t) are strictly positive.

Hence Partition Alg. (Social Choice Alg.) still works here!
(The partition is possibly time-varying.)
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Other Related Aspects

DeGroot formulation with centrality-weighted influence
pyi: the probability of individual 1 support a given opinion at time k
Px = [Pk1s - - - Pxnl: probability (row) vector

Probability transition: Pret = PrAT (1), (6)

p;j(t)

h Ayt) = =—21 2
where Ay;(t) S e, G505 (0

ay, ijefl,..,nh

Measure for opinion diversity
> Opinion diversity energy
> Inverse entropy diversity

> Inverse Simpson index

(For more details see Gao CDC’21)
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Conclusion and Future Directions

Conclusion
» Centrality-weighted opinion dynamics

» Network Partition Procedure

Future Directions
» More real-world examples with different types of centralities
> Systematic procedures to learn suitable centralities
» (Equilibrium) state-dependent centralities

» Centralities that allow updates over time

Thank you! Questions?
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