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Complex networks:
1. large/growing sizes
2. complex connections
3. dynamics

Salient Features:
1. local states
2. interactions
3. cost

Motivation

Networks are ubiquitous, growing in size and complexity

	 	 	

	 	 	

	 	

	

	
	Online Social Networks, Grid Networks, Transportation Networks, IoT ...
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Literature Overview

Low-complexity solutions that scale? [Ho and Mitter, 1976; Sandell et al., 1978]

Various aspects of low-complexity solutions:
I Simplified control objectives (e.g., consensus or synchronization)

[Olfati-Saber and Murray, 2003; Movric and Lewis, 2013; Arenas et al., 2008]

I Simplified control inputs (e.g., pinning control or ensemble
control) [Grigoriev et al., 1997; Wang and Chen, 2002] [Li, 2011]

I Simplified couplings between subsystems (e.g., symmetric
interconnections, exchangeable subsystems, or patterned systems)
[Lunze, 1986; Grizzle and Marcus, 1985; Yang and Zhang, 1995, 1996; Sundareshan and Elbanna, 1991],

[Madjidian and Mirkin, 2014; Arabneydi and Mahajan, 2017], [Hamilton and Broucke, 2012]

I Approximate optimality as the number of subsystems become
large (e.g., mean-field games or graphon-based control)
[Huang et al., 2003, 2006; Lasry and Lions, 2006; Li and Zhang, 2008] [Gao and Caines, 2017, 2018a,b].
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Network of Linear Dynamical Systems
Dynamics

Undirected weighted network: G(N,E,M)
Adjacency matrix: M = [mij] ∈ Rn×n

Node i: state xi(t) ∈ Rdx

control ui(t) ∈ Rdu

Network influence perceived at node i:

zi(t) =
∑
j∈Ni

mijxj(t)

vi(t) =
∑
j∈Ni

mijuj(t).
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Network of Linear Dynamical Systems
Dynamics

The dynamics of node i:

ẋi(t) = Axi(t) + Bui(t) +Dzi(t) + Evi(t), (1)

Network influence perceived at node i:

zi(t) =
∑
j∈Ni

mijxj(t) and vi(t) =
∑
j∈Ni

mijuj(t). (2)
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Network of Linear Dynamical Systems
Control cost

The instantaneous cost at t ∈ [0, T):

c(x(t),u(t)) =
∑
i∈N

∑
j∈N

[
gijxi(t)

ᵀ
Qxj(t) + hijui(t)

ᵀ
Ruj(t)

]
(3)

Terminal cost:

cT (x(T)) =
∑
i∈N

∑
j∈N

gijxi(T)
ᵀ
QTxj(T), (4)

(A1) Q > 0, QT > 0 and R > 0.

Notation: G = [gij] and H = [hij].
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Network of Linear Dynamical Systems
Example on cost coupling

G = q0I+ q1M+ q2M
2 and H = r0I+ r1M+ r2M

2
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(a) A graph G
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(b) 2-hop neighborhood of G

M =


0 2 0 1
2 0 2 0
0 2 0 1
1 0 1 0

 and M2 =


5 0 5 0
0 8 0 4
5 0 5 0
0 4 0 2

 .
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Network of Linear Dynamical Systems
Assumptions on control cost

Cost weight matrices G and H are polynomials ofM

G =

KG∑
k=0

qkM
k and H =

KH∑
k=0

rkM
k

(A2) For ` ∈ {0, 1, . . . ,L}, q` > 0 and r` > 0.

q` =

KG∑
k=0

qk(λ
`)k and r` =

KH∑
k=0

rk(λ
`)k.

(A2) ensures that, G > 0 and H > 0.

L: rank ofM ; λ1, . . . , λL: non-zero (real) eigenvalues ofM.
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Network of Linear Dynamical Systems
Control objective

Problem (1)
Choose a control trajectory u : [0, T)→ Rdu×n to minimize

J(u) =

∫T
0
c(x(t),u(t))dt+ cT (x(T)) (5)

subject to the dynamics

ẋi(t) = Axi(t) + Bui(t) +Dzi(t) + Evi(t), (6)

zi(t) =
∑
j∈Ni

mijxj(t) and vi(t) =
∑
j∈Ni

mijuj(t). (7)
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Network of Linear Dynamical Systems
Dynamics: Compact form

“Vectorized” representations of system dynamics:

ẋ(t) = Ax(t) + Bu(t) +Dz(t) + Ev(t). (8)

Matrix state and control actions:

x(t) = cols(x1(t), . . . , xn(t)) ∈ Rdx×n

u(t) = cols(u1(t), . . . ,un(t)) ∈ Rdu×n

Matrix network influence:

z(t) = cols(z1(t), . . . , zn(t)) ∈ Rdx×n

v(t) = cols(v1(t), . . . , vn(t)) ∈ Rdu×n

Note:

z(t) = x(t)M
ᵀ
= x(t)M and v(t) = u(t)M

ᵀ
= u(t)M.
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Decomposition

Main idea:

Step 1: Project the state x(t) into L orthogonal eigendirections:

{x`(t)}L`=1 and x̆(t) = x(t) −

L∑
`=1

x`(t)

and similar decompositions for the control inputs.

Step 2: Solve L+ 1 decoupled problems (in dynamics and cost)
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Decomposition
Spectral factorization

Spectral Factorization:

M =

L∑
`=1

λ`w`w`ᵀ. (9)

For ` ∈ {1, . . . ,L}, define

Eigenstate : x`(t) = x(t)w`w`
ᵀ

Eigencontrol: u`(t) = u(t)w`w`
ᵀ

Eigen Dynamics:

ẋ`(t) = (A+ λ`D)x`(t) + (B+ λ`E)u`(t), (10)

Note thatMw`w`
ᵀ
= λ`w`w`

ᵀ
.
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Decomposition
Projections and decoupled dynamics

Auxiliary state and control actions:

x̆(t) = x(t) −

L∑
`=1

x`(t) and ŭ(t) = u(t) −

L∑
`=1

u`(t).

Auxiliary Dynamics:

˙̆x(t) = Ax̆(t) + Bŭ(t). (11)

Eigen Dynamics:

ẋ`(t) = (A+ λ`D)x`(t) + (B+ λ`E)u`(t), (12)
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Decomposition
Local representation of decoupled dynamics

Decoupled “local” auxiliary dynamics:

˙̆xi(t) = Ax̆i(t) + Bŭi(t), i ∈ N. (13)

Decoupled “local” eigen dynamics:

ẋ`i(t) = (A+ λ`D)x`i(t) + (B+ λ`E)u`i(t), i ∈ N. (14)

Note:

x`(t) = cols(x`1(t), . . . , x`n(t)),

u`(t) = cols(u`1(t), . . . ,u`n(t)).
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Decomposition
Cost decoupling

J(u) =
∑
i∈N

[
J̆i(ŭi) +

L∑
`=1

J`i(u
`
i)
]
.

Proposition (Cost Decoupling)
The instantaneous cost may be written as

c(x(t),u(t)) = 〈x(t),Qx(t)〉G + 〈u(t),Ru(t)〉H,

which can be simplified as follows:

〈x(t),Qx(t)〉G =
∑
i∈N

[
q0x̆i(t)

ᵀ
Qx̆i(t) +

L∑
`=1

q`x`i(t)
ᵀ
Qx`i(t)

]
,

〈u(t),Ru(t)〉H =
∑
i∈N

[
r0ŭi(t)

ᵀ
Rŭi(t) +

L∑
`=1

r`u`i(t)
ᵀ
Ru`i(t)

]
.
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Decomposition
Decoupled Problem

Auxiliary Problem:

˙̆xi(t) = Ax̆i(t) + Bŭi(t), i ∈ N

J̆i(ŭi) =

∫T
0

[
q0x̆i(t)

ᵀ
Qx̆i(t)+r0ŭi(t)

ᵀ
Rŭi(t)

]
dt+q0x̆i(T)

ᵀ
Qx̆i(T).

Eigen Problem:

ẋ`i(t) = (A+ λ`D)x`i(t) + (B+ λ`E)u`i(t), i ∈ N

J`i(u
`
i) =

∫T
0

[
q`x`i(t)

ᵀ
Qx`i(t)+r

`u`i(t)
ᵀ
Ru`i(t)

]
dt+q`x`i(T)

ᵀ
Qx`i(T).

This decomposition for mean-field coupling (L = 1) is used in [Arabneydi and

Mahajan, 2017].
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Main result
Theorem (Optimal Solution)
For ` ∈ {1, . . . ,L}, let P` : [0, T ]→ Rdx×dx be the solution to the Riccati
equation

−Ṗ`(t) = (A+ λ`D)
ᵀ
P`(t) + P`(t)(A+ λ`D)

− P`(t)(B+ λ`E)(r`R)−1(B+ λ`E)
ᵀ
P`(t) + q`Q, P`(T) = q`QT .

(15)
Similarly, let P̆ : [0, T ]→ Rdx×dx be the solution to the Riccati equation

− ˙̆P(t) = AᵀP̆(t)+ P̆(t)A− P̆(t)B(r0R)
−1B

ᵀ
P̆(t)+q0Q, P̆(T) = q0QT .

(16)
Then, under assumptions (A1) and (A2), the optimal control strategy for
Problem 1 is given by

ui(t) = −K̆(t)x̆i(t)−

L∑
`=1

K`(t)x`i(t), (17)

K̆(t) = (r0R)
−1B

ᵀ
P̆(t), K`(t) = (r`R)−1(B+ λ`E)

ᵀ
P`(t).
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Illustrative example
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Figure: Graphs with adjacency matricesM20 =M⊗ 1
515×5 and M

L = rank(M) = rank(M20) = 2.

Consider the following couplings in the cost

G = I− 2M20 +M
2
20 and H = I. (18)
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Illustrative example

Parameters: a = 2 and b = 1. dx = du = 1;
A = 2,B = 1,D = 3,E = 0.5, Q = 5,QT = 6,R = 2.

The evolutions of the corresponding eigenstates and the auxiliary states along with the

eigencontrols and the auxiliary controls
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Conclusion

Low-complexity solution to optimal networked control of coupled
subsystems (in dynamics and cost) via an underlying weighted graph.

Complexity:

# of Riccati Dim of Riccati

Naive soln 1 ndx × ndx
Decoupling soln L+ 1 dx × dx

Note L 6 n.

Future directions: directed network, heterogeneous local dynamics,
uncertainties in dynamics and network structures, approximations ...
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Thank you!

	 	 	

	 	 	

	 	

	

	
	

S. Gao & A. Mahajan Networked control of coupled subsystems: Spectral decomposition and low-dimensional solutions 20/22



Reference
Arabneydi, J. and Mahajan, A. Linear quadratic mean field teams: Optimal and approximately optimal

decentralized solutions. arXiv preprint arXiv:1609.00056v2, 2017.
Arenas, A., Dı́az-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C. Synchronization in complex networks. Physics

Reports, 469(3):93–153, 2008.
Bian, T., Jiang, Y., and Jiang, Z.-P. Decentralized adaptive optimal control of large-scale systems with application to

power systems. 62(4):2439–2447, 2015.
Gang, H. and Zhilin, Q. Controlling spatiotemporal chaos in coupled map lattice systems. Physical Review Letters, 72

(1):68, 1994.
Gao, S. Graphon Control Theory for Linear Systems on Complex Networks and Related Topics. PhD thesis, McGill

University, 2019.
Gao, S. and Caines, P. E. The control of arbitrary size networks of linear systems via graphon limits: An initial

investigation. In Proceedings of the 56th IEEE Conference on Decision and Control (CDC), pages 1052–1057,
Melbourne, Australia, December 2017.

Gao, S. and Caines, P. E. Graphon linear quadratic regulation of large-scale networks of linear systems. In
Proceedings of the 57th IEEE Conference on Decision and Control (CDC), pages 5892–5897, Miami Beach, FL, USA,
December 2018a.

Gao, S. and Caines, P. E. Graphon control of large-scale networks of linear systems. arXiv preprint arXiv:1807.03412,
2018b.

Grigoriev, R., Cross, M., and Schuster, H. Pinning control of spatiotemporal chaos. Physical Review Letters, 79(15):
2795, 1997.

Grizzle, J. and Marcus, S. The structure of nonlinear control systems possessing symmetries. IEEE Transactions on
Automatic Control, 30(3):248–258, 1985.

Hamilton, S. C. and Broucke, M. E. Patterned linear systems. Automatica, 48(2):263–272, 2012.
Ho, Y. and Mitter, S. Directions in Decentralized Control, Many-Person Optimization, and Large Scale Systems. Plenum,

New York, 1976.
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