Networked Control of Coupled Subsystems Spectral Decomposition and Low-dimensional Solutions

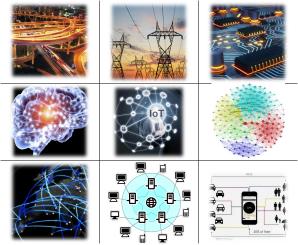
Shuang Gao and Aditya Mahajan

Centre for Intelligent Machines, Electrical and Computer Engineering, McGill University, Montréal, QC.

58th IEEE Conference on Decision and Control Dec. 12, 2019

Motivation

Networks are ubiquitous, growing in size and complexity



Complex networks:

- 1. large/growing sizes
- 2. complex connections
- 3. dynamics

- 1. local states
- 2. interactions
- 3. cost

Online Social Networks, Grid Networks, Transportation Networks, IoT ...

Literature Overview

Low-complexity solutions that scale? [Ho and Mitter, 1976; Sandell et al., 1978]

Various aspects of low-complexity solutions:

- Simplified control objectives (e.g., consensus or synchronization) [Olfati-Saber and Murray, 2003; Movric and Lewis, 2013; Arenas et al., 2008]
- Simplified control inputs (e.g., pinning control or ensemble control) [Grigoriev et al., 1997; Wang and Chen, 2002] [Li, 2011]

Simplified couplings between subsystems (e.g., symmetric interconnections, exchangeable subsystems, or patterned systems)
 [Lunze, 1986; Grizzle and Marcus, 1985; Yang and Zhang, 1995, 1996; Sundareshan and Elbanna, 1991],
 [Madjidian and Mirkin, 2014; Arabneydi and Mahajan, 2017], [Hamilton and Broucke, 2012]

 Approximate optimality as the number of subsystems become large (e.g., mean-field games or graphon-based control)
 [Huang et al., 2003, 2006; Lasry and Lions, 2006; Li and Zhang, 2008] [Gao and Caines, 2017, 2018a,b].

Outline

1 Network of Linear Dynamical Systems

2 Decomposition Method

3 Main Result

4 Illustrative Example

Network of Linear Dynamical Systems Dynamics

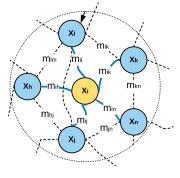
Undirected weighted network: Adjacency matrix:

 $\mathcal{G}(\mathcal{N}, \mathcal{E}, \mathcal{M})$ $\mathcal{M} = [\mathfrak{m}_{ij}] \in \mathbb{R}^{n \times n}$

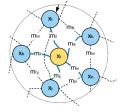
Node i: state $x_i(t) \in \mathbb{R}^{d_x}$ control $u_i(t) \in \mathbb{R}^{d_u}$

Network influence perceived at node i:

$$\begin{split} z_i(t) &= \sum_{j \in \mathcal{N}_i} m_{ij} x_j(t) \\ \nu_i(t) &= \sum_{j \in \mathcal{N}_i} m_{ij} u_j(t). \end{split}$$



Network of Linear Dynamical Systems Dynamics



The dynamics of node i:

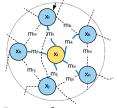
$$\dot{x}_{i}(t) = Ax_{i}(t) + Bu_{i}(t) + Dz_{i}(t) + Ev_{i}(t), \quad (1)$$

Network influence perceived at node i:

$$z_i(t) = \sum_{j \in N_i} m_{ij} x_j(t)$$
 and $v_i(t) = \sum_{j \in N_i} m_{ij} u_j(t)$. (2)

Network of Linear Dynamical Systems Control cost

The instantaneous cost at $t \in [0, T)$:



 $c(\mathbf{x}(t), \mathbf{u}(t)) = \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} \left[g_{ij} \mathbf{x}_i(t)^\mathsf{T} Q \mathbf{x}_j(t) + h_{ij} \mathbf{u}_i(t)^\mathsf{T} R \mathbf{u}_j(t) \right]$ (3)

Terminal cost:

$$c_{\mathsf{T}}(\mathsf{x}(\mathsf{T})) = \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} g_{ij} \mathsf{x}_{i}(\mathsf{T})^{\mathsf{T}} Q_{\mathsf{T}} \mathsf{x}_{j}(\mathsf{T}), \tag{4}$$

(A1) $Q \ge 0$, $Q_T \ge 0$ and R > 0.

Notation: $G = [g_{ij}]$ and $H = [h_{ij}]$.

Network of Linear Dynamical Systems

Example on cost coupling

$$\mathsf{G}=\mathsf{q}_0\mathsf{I}+\mathsf{q}_1\mathsf{M}+\mathsf{q}_2\mathsf{M}^2 \text{ and } \mathsf{H}=\mathsf{r}_0\mathsf{I}+\mathsf{r}_1\mathsf{M}+\mathsf{r}_2\mathsf{M}^2$$

 $8 \bigcirc 2 \qquad 1 \bigcirc 5$ $5 \bigcirc 3 \qquad 4 \bigcirc 2$

(a) A graph 9

(b) 2-hop neighborhood of ${\boldsymbol{\mathfrak{G}}}$

٠

$$M = \begin{bmatrix} 0 & 2 & 0 & 1 \\ 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \text{ and } M^2 = \begin{bmatrix} 5 & 0 & 5 & 0 \\ 0 & 8 & 0 & 4 \\ 5 & 0 & 5 & 0 \\ 0 & 4 & 0 & 2 \end{bmatrix}$$

Network of Linear Dynamical Systems

Assumptions on control cost

Cost weight matrices G and H are polynomials of M

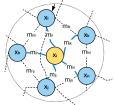
$$G = \sum_{k=0}^{K_G} q_k M^k$$
 and $H = \sum_{k=0}^{K_H} r_k M^k$

(A2) For $\ell \in \{0, 1, \dots, L\}$, $q^{\ell} \ge 0$ and $r^{\ell} > 0$.

$$\mathfrak{q}^\ell = \sum_{k=0}^{K_G} \mathfrak{q}_k (\lambda^\ell)^k \quad \text{and} \quad \mathfrak{r}^\ell = \sum_{k=0}^{K_H} \mathfrak{r}_k (\lambda^\ell)^k.$$

(A2) ensures that, $G \ge 0$ and H > 0.

L: rank of M ; $\lambda^1, \ldots, \lambda^L$: non-zero (real) eigenvalues of M.



Network of Linear Dynamical Systems Control objective

Problem (1)

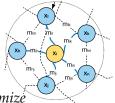
Choose a control trajectory $u: [0,T) \rightarrow \mathbb{R}^{d_u \times n}$ *to minimize*

$$J(u) = \int_0^T c(x(t), u(t)) dt + c_T(x(T))$$
 (5)

subject to the dynamics

$$\dot{x}_{i}(t) = Ax_{i}(t) + Bu_{i}(t) + Dz_{i}(t) + Ev_{i}(t),$$
 (6)

$$z_{i}(t) = \sum_{j \in \mathcal{N}_{i}} \mathfrak{m}_{ij} x_{j}(t) \quad \text{and} \quad \nu_{i}(t) = \sum_{j \in \mathcal{N}_{i}} \mathfrak{m}_{ij} \mathfrak{u}_{j}(t).$$
(7)



Network of Linear Dynamical Systems

Dynamics: Compact form

"Vectorized" representations of system dynamics:

$$\dot{x}(t) = Ax(t) + Bu(t) + Dz(t) + Ev(t).$$
 (8)

Matrix state and control actions:

$$\begin{aligned} \mathbf{x}(t) &= \operatorname{cols}(\mathbf{x}_1(t), \dots, \mathbf{x}_n(t)) \in \mathbb{R}^{d_x \times n} \\ \mathbf{u}(t) &= \operatorname{cols}(\mathbf{u}_1(t), \dots, \mathbf{u}_n(t)) \in \mathbb{R}^{d_u \times n} \end{aligned}$$

$$\left[\begin{array}{c} x_1 \\ \end{array}\right] \left[\begin{array}{c} x_2 \\ \end{array}\right] \cdot \cdot \cdot \left[\begin{array}{c} x_n \\ \end{array}\right]$$

Matrix network influence:

$$\begin{aligned} z(t) &= \operatorname{cols}(z_1(t), \dots, z_n(t)) \in \mathbb{R}^{d_x \times n} \\ \nu(t) &= \operatorname{cols}(\nu_1(t), \dots, \nu_n(t)) \in \mathbb{R}^{d_u \times n} \end{aligned}$$

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] \quad \cdots \quad \left[\begin{array}{c} x_n \\ x_n \end{array}\right]$$

Note:

$$z(t) = x(t)M^{\mathsf{T}} = x(t)M \quad \text{and} \quad \nu(t) = u(t)M^{\mathsf{T}} = u(t)M.$$

Outline

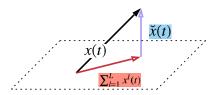
1 Network of Linear Dynamical Systems

2 Decomposition Method

3 Main Result

4 Illustrative Example

Decomposition



т

Main idea:

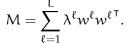
Step 1: Project the state x(t) into L orthogonal eigendirections:

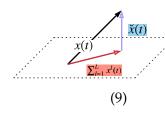
$$\{x^{\ell}(t)\}_{\ell=1}^{L}$$
 and $\check{x}(t) = x(t) - \sum_{\ell=1}^{L} x^{\ell}(t)$
and similar decompositions for the control inputs.

Step 2: Solve L + 1 decoupled problems (in dynamics and cost)

Decomposition Spectral factorization

Spectral Factorization:





For $\ell \in \{1, \ldots, L\}$, define

Eigenstate : $x^{\ell}(t) = x(t)w^{\ell}w^{\ell^{\intercal}}$ Eigencontrol: $u^{\ell}(t) = u(t)w^{\ell}w^{\ell^{\intercal}}$

Eigen Dynamics:

Note

$$\dot{\mathbf{x}}^{\ell}(\mathbf{t}) = (\mathbf{A} + \lambda^{\ell} \mathbf{D}) \mathbf{x}^{\ell}(\mathbf{t}) + (\mathbf{B} + \lambda^{\ell} \mathbf{E}) \mathbf{u}^{\ell}(\mathbf{t}), \tag{10}$$

that $\mathbf{M} w^{\ell} w^{\ell^{\mathsf{T}}} = \lambda^{\ell} w^{\ell} w^{\ell^{\mathsf{T}}}.$

Decomposition

Projections and decoupled dynamics

Auxiliary state and control actions:

$$\breve{x}(t) = x(t) - \sum_{\ell=1}^L x^\ell(t) \quad \text{and} \quad \breve{u}(t) = u(t) - \sum_{\ell=1}^L u^\ell(t).$$

Auxiliary Dynamics:

$$\dot{\tilde{x}}(t) = A\tilde{x}(t) + B\tilde{u}(t). \tag{11}$$

 $\check{x}(t)$

x(t)

 $\sum_{l=1}^{L} x^{l}$

Eigen Dynamics:

$$\dot{x}^\ell(t) = (A + \lambda^\ell D) x^\ell(t) + (B + \lambda^\ell E) u^\ell(t), \tag{12}$$

Decomposition

Local representation of decoupled dynamics

Decoupled "local" auxiliary dynamics:

$$\dot{\tilde{x}}_{i}(t) = A \breve{x}_{i}(t) + B \breve{u}_{i}(t), \quad i \in \mathcal{N}.$$
(13)

 $\check{x}(t)$

x(t)

 $\sum_{l=1}^{L}$

Decoupled "local" eigen dynamics:

$$\dot{x}^\ell_i(t) = (A + \lambda^\ell D) x^\ell_i(t) + (B + \lambda^\ell E) u^\ell_i(t), \quad i \in \mathbb{N}. \tag{14}$$

Note:

$$\begin{aligned} \mathbf{x}^{\ell}(\mathbf{t}) &= \operatorname{cols}(\mathbf{x}_{1}^{\ell}(\mathbf{t}), \dots, \mathbf{x}_{n}^{\ell}(\mathbf{t})), \\ \mathbf{u}^{\ell}(\mathbf{t}) &= \operatorname{cols}(\mathbf{u}_{1}^{\ell}(\mathbf{t}), \dots, \mathbf{u}_{n}^{\ell}(\mathbf{t})). \end{aligned} \qquad \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{2} \\ \mathbf{x}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{2} \\ \mathbf{x}_{3} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{3} \\ \mathbf{x}_{3} \end{bmatrix}$$

S. Gao & A. Mahajan Networked control of coupled subsystems: Spectral decomposition and low-dimensional solutions 13/22

Decomposition Cost decoupling

$$J(u) = \sum_{i \in \mathcal{N}} \left[\breve{J}_i(\breve{u}_i) + \sum_{\ell=1}^L J_i^\ell(u_i^{\ell,j}) \right] \dots \dots \underbrace{\Sigma_{l=1}^L x^l(t)}_{L \in \mathcal{N}}$$

 $\check{x}(t)$

Proposition (Cost Decoupling) The instantaneous cost may be written as

$$c(\mathbf{x}(t),\mathbf{u}(t)) = \langle \mathbf{x}(t), Q\mathbf{x}(t) \rangle_{G} + \langle \mathbf{u}(t), R\mathbf{u}(t) \rangle_{H},$$

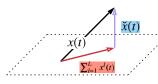
which can be simplified as follows:

$$\begin{split} \langle \mathbf{x}(t), Q \mathbf{x}(t) \rangle_{G} &= \sum_{i \in \mathcal{N}} \Bigl[q_{0} \check{\mathbf{x}}_{i}(t)^{\mathsf{T}} Q \check{\mathbf{x}}_{i}(t) + \sum_{\ell=1}^{L} q^{\ell} \mathbf{x}_{i}^{\ell}(t)^{\mathsf{T}} Q \mathbf{x}_{i}^{\ell}(t) \Bigr], \\ \langle \mathbf{u}(t), R \mathbf{u}(t) \rangle_{H} &= \sum_{i \in \mathcal{N}} \Bigl[r_{0} \check{\mathbf{u}}_{i}(t)^{\mathsf{T}} R \check{\mathbf{u}}_{i}(t) + \sum_{\ell=1}^{L} r^{\ell} \mathbf{u}_{i}^{\ell}(t)^{\mathsf{T}} R \mathbf{u}_{i}^{\ell}(t) \Bigr]. \end{split}$$

S. Gao & A. Mahajan Networked control of coupled subsystems: Spectral decomposition and low-dimensional solutions 14/22

Decomposition Decoupled Problem

Auxiliary Problem:



$$\begin{split} \dot{\tilde{x}}_i(t) &= A \breve{x}_i(t) + B \breve{u}_i(t), i \in \mathcal{N} \\ \breve{J}_i(\breve{u}_i) &= \int_0^T \big[q_0 \breve{x}_i(t)^\intercal Q \breve{x}_i(t) + r_0 \breve{u}_i(t)^\intercal R \breve{u}_i(t) \big] dt + q_0 \breve{x}_i(T)^\intercal Q \breve{x}_i(T). \end{split}$$

Eigen Problem:

$$\begin{split} \dot{x}_i^\ell(t) &= (A + \lambda^\ell D) x_i^\ell(t) + (B + \lambda^\ell E) u_i^\ell(t), i \in \mathcal{N} \\ J_i^\ell(u_i^\ell) &= \int_0^T \left[q^\ell x_i^\ell(t)^\intercal Q x_i^\ell(t) + r^\ell u_i^\ell(t)^\intercal R u_i^\ell(t) \right] dt + q^\ell x_i^\ell(T)^\intercal Q x_i^\ell(T). \end{split}$$

This decomposition for mean-field coupling (L = 1) is used in [Arabneydi and Mahajan, 2017].

S. Gao & A. Mahajan Networked control of coupled subsystems: Spectral decomposition and low-dimensional solutions 15/22

Outline

1 Network of Linear Dynamical Systems

2 Decomposition Method

3 Main Result

4 Illustrative Example

Main result

K

Theorem (Optimal Solution)

For $\ell \in \{1, ..., L\}$, let $P^{\ell} \colon [0, T] \to \mathbb{R}^{d_x \times d_x}$ be the solution to the Riccati equation

$$\begin{split} -\dot{P}^{\ell}(t) &= (A + \lambda^{\ell}D)^{\mathsf{T}}P^{\ell}(t) + P^{\ell}(t)(A + \lambda^{\ell}D) \\ &- P^{\ell}(t)(B + \lambda^{\ell}E)(r^{\ell}R)^{-1}(B + \lambda^{\ell}E)^{\mathsf{T}}P^{\ell}(t) + q^{\ell}Q, \quad P^{\ell}(\mathsf{T}) = q^{\ell}Q_{\mathsf{T}}. \end{split}$$
(15)

Similarly, let \check{P} : $[0,T] \to \mathbb{R}^{d_x \times d_x}$ be the solution to the Riccati equation

$$-\dot{\breve{P}}(t) = A^{\mathsf{T}}\breve{P}(t) + \breve{P}(t)A - \breve{P}(t)B(r_0R)^{-1}B^{\mathsf{T}}\breve{P}(t) + q_0Q, \quad \breve{P}(\mathsf{T}) = q_0Q_{\mathsf{T}}.$$
(16)

Then, under assumptions (A1) and (A2), the optimal control strategy for Problem 1 is given by

$$u_{i}(t) = -\breve{K}(t)\breve{x}_{i}(t) - \sum_{\ell=1}^{L} K^{\ell}(t)x_{i}^{\ell}(t),$$
(17)
(t) = $(r_{0}R)^{-1}B^{\mathsf{T}}\breve{P}(t), \quad K^{\ell}(t) = (r^{\ell}R)^{-1}(B + \lambda^{\ell}E)^{\mathsf{T}}P^{\ell}(t).$

Outline

1 Network of Linear Dynamical Systems

2 Decomposition Method

3 Main Result

4 Illustrative Example

Illustrative example

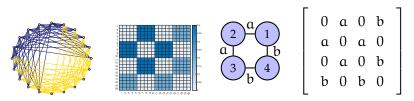


Figure: Graphs with adjacency matrices $M_{20}=M\otimes \frac{1}{5}1\!\!1_{5\times 5}$ and M

 $L = rank(M) = rank(M_{20}) = 2.$

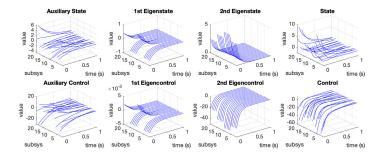
Consider the following couplings in the cost

$$G = I - 2M_{20} + M_{20}^2$$
 and $H = I$. (18)

S. Gao & A. Mahajan Networked control of coupled subsystems: Spectral decomposition and low-dimensional solutions 17/22

Illustrative example

Parameters: a = 2 and b = 1. $d_x = d_u = 1$; A = 2, B = 1, D = 3, E = 0.5, Q = 5, Q_T = 6, R = 2.



The evolutions of the corresponding eigenstates and the auxiliary states along with the eigencontrols and the auxiliary controls

Outline

1 Network of Linear Dynamical Systems

2 Decomposition Method

3 Main Result

4 Illustrative Example

Conclusion

Low-complexity solution to optimal networked control of coupled subsystems (in dynamics and cost) via an underlying weighted graph.

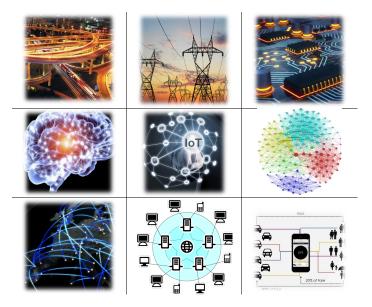
Complexity:

	# of Riccati	Dim of Riccati
Naive soln	1	$nd_x \times nd_x$
Decoupling soln	L+1	$d_{x} \times d_{x}$

Note $L \leq n$.

Future directions: directed network, heterogeneous local dynamics, uncertainties in dynamics and network structures, approximations ...

Thank you!



Reference

- Arabneydi, J. and Mahajan, A. Linear quadratic mean field teams: Optimal and approximately optimal decentralized solutions. arXiv preprint arXiv:1609.00056v2, 2017.
- Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., and Zhou, C. Synchronization in complex networks. *Physics Reports*, 469(3):93–153, 2008.
- Bian, T., Jiang, Y., and Jiang, Z.-P. Decentralized adaptive optimal control of large-scale systems with application to power systems. 62(4):2439–2447, 2015.
- Gang, H. and Zhilin, Q. Controlling spatiotemporal chaos in coupled map lattice systems. *Physical Review Letters*, 72 (1):68, 1994.
- Gao, S. Graphon Control Theory for Linear Systems on Complex Networks and Related Topics. PhD thesis, McGill University, 2019.
- Gao, S. and Caines, P. E. The control of arbitrary size networks of linear systems via graphon limits: An initial investigation. In Proceedings of the 56th IEEE Conference on Decision and Control (CDC), pages 1052–1057, Melbourne, Australia, December 2017.
- Gao, S. and Caines, P. E. Graphon linear quadratic regulation of large-scale networks of linear systems. In Proceedings of the 57th IEEE Conference on Decision and Control (CDC), pages 5892–5897, Miami Beach, FL, USA, December 2018a.
- Gao, S. and Caines, P. E. Graphon control of large-scale networks of linear systems. arXiv preprint arXiv:1807.03412, 2018b.
- Grigoriev, R., Cross, M., and Schuster, H. Pinning control of spatiotemporal chaos. *Physical Review Letters*, 79(15): 2795, 1997.
- Grizzle, J. and Marcus, S. The structure of nonlinear control systems possessing symmetries. IEEE Transactions on Automatic Control, 30(3):248–258, 1985.
- Hamilton, S. C. and Broucke, M. E. Patterned linear systems. Automatica, 48(2):263-272, 2012.
- Ho, Y. and Mitter, S. Directions in Decentralized Control, Many-Person Optimization, and Large Scale Systems. Plenum, New York, 1976.
- Huang, M., Caines, P. E., and Malhamé, R. P. Individual and mass behaviour in large population stochastic wireless power control problems: centralized and nash equilibrium solutions. In *Decision and Control*, 2003. Proceedings. 42nd IEEE Conference on, volume 1, pages 98–103. IEEE, 2003.
- Huang, M., Malhamé, R. P., and Caines, P. E. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the nash certainty equivalence principle. *Communications in Information & Systems*, 6(3):221–252, 2006.
- Lasry, J.-M. and Lions, P.-L. Jeux à champ moyen. i–le cas stationnaire. Comptes Rendus Mathématique, 343(9):619–625, 2006.
- S. Gao & A. Mahajan Networked control of coupled subsystems: Spectral decomposition and low-dimensional solutions 21/22

Reference

- Li, J.-S. Ensemble control of finite-dimensional time-varying linear systems. IEEE Transactions on Automatic Control, 56(2):345–357, 2011.
- Li, T. and Zhang, J.-F. Asymptotically optimal decentralized control for large population stochastic multiagent systems. 53(7):1643–1660, 2008.
- Liu, Y.-Y., Slotine, J.-J., and Barabási, A.-L. Controllability of complex networks. Nature, 473(7346):167–173, 2011.
- Lunze, J. Dynamics of strongly coupled symmetric composite systems. International Journal of Control, 44(6): 1617–1640, 1986.
- Madjidian, D. and Mirkin, L. Distributed control with low-rank coordination. IEEE Transactions on Control of Network Systems, 1(1):53–63, 2014.
- Movric, K. H. and Lewis, F. L. Cooperative optimal control for multi-agent systems on directed graph topologies. IEEE Transactions on Automatic Control, 59(3):769–774, 2013.
- Olfati-Saber, R. and Murray, R. M. Consensus protocols for networks of dynamic agents. In Proceedings of the 2003 American Control Conference, 2003., volume 2, pages 951–956. IEEE, 2003.
- Olfati-Saber, R., Fax, J. A., and Murray, R. M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.
- Pasqualetti, F., Zampieri, S., and Bullo, F. Controllability metrics, limitations and algorithms for complex networks. IEEE Transactions on Control of Network Systems, 1(1):40–52, 2014.
- Sandell, N., Varaiya, P., Athans, M., and Safonov, M. Survey of decentralized control methods for large scale systems. 23(2):108–128, 1978.
- Šiljak, D. D. and Zečević, A. Control of large-scale systems: Beyond decentralized feedback. Annual Reviews in Control, 29(2):169–179, 2005.
- Sundareshan, M. K. and Elbanna, R. M. Qualitative analysis and decentralized controller synthesis for a class of large-scale systems with symmetrically interconnected subsystems. *Automatica*, 27(2):383–388, 1991.
- Wang, X. F. and Chen, G. Pinning control of scale-free dynamical networks. Physica A: Statistical Mechanics and Its Applications, 310(3-4):521–531, 2002.
- Yan, G., Tsekenis, G., Barzel, B., Slotine, J.-J., Liu, Y.-Y., and Barabási, A.-L. Spectrum of controlling and observing complex networks. *Nature Physics*, 11(9):779–786, 2015.
- Yang, G.-H. and Zhang, S.-Y. Structural properties of large-scale systems possessing similar structures. Automatica, 31(7):1011–1017, 1995.
- Yang, G.-H. and Zhang, S.-Y. Decentralized control of a class of large-scale systems with symmetrically interconnected subsystems. 41(5):710–713, 1996.