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Motivation

Networks are everywhere, growing in size and complexity.
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Background
Challenges in controlling complex networks of dynamical systems:
Large or growing number of nodes
Complex connections

Dynamics

Analysis problem

Controllability, observability and control energy metric, etc.
(Liu et al., 2011), (Yan et al., 2015),(Pasqualetti et al., 2014)

Synthesis problem

Simplified control objectives (e.g., consensus or synchronization)
(Olfati-Saber and Murray, 2003; Movric and Lewis, 2013; Arenas et al., 2008)

Simplified control inputs (e.g., pinning control or ensemble control)
(Grigoriev et al., 1997; Wang and Chen, 2002) (Li, 2011)

Simplified couplings between subsystems (e.g., symmetric
interconnections, exchangeable subsystems, or patterned systems)
(Lunze, 1986; Grizzle and Marcus, 1985; Yang and Zhang, 1995, 1996; Sundareshan and Elbanna, 1991),
(Madjidian and Mirkin, 2014; Arabneydi and Mahajan, 2017), (Hamilton and Broucke, 2012)



Background

Graphon control: approximate control of dynamical systems on
arbitrary-size complex networks

Mathematical framework for dynamical systems on
arbitrary-size networks: Graphon control systems
(SG PEC: CDC17, CDC18, MTNS18, CDC19, TAC20)

Systems and control theory for complex networks of linear
dynamical systems:
Graphon state-to-state control (SG PEC: CDC17, TAC20)
Centralized graphon linear quadratic regulation
(SG PEC: CDC18, MTNS18, TAC20)

Collaborative graphon linear quadratic regulation
(SG PEC: CDC19)
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Graphon Control Methodology (sG PEC: CDC17,18,19, TAC20)
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Program

1 Introduction to Graphons

2| Networks of Linear Systems and Their Limits

3| Graphon Linear Quadratic Regulation

4 Conclusion



Introduction to Graphons
Graphs, Adjacency Matrices and Pixel Pictures

Graph Adjacency Matrix Pixel Picture

Graph, Adjacency Matrix, Pixel Picture (Lovasz, 2012)

The whole pixel picture is presented in a unit square [0, 1] x [0, 1],

1
so the square elements have sides of length N where N is the

number of nodes.
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Introduction to Graphons
Graph Sequence Converging to Graphon

Graph Sequence Converging to its Limit (Lovasz, 2012)

Graphons: bounded symmetric Lebesgue measurable functions
W:[0,1]° — [0,1]
interpreted as weighted graphs on the vertex set [0, 1].

GP .= (W:[0,112 = [0,1]}
Notations of Spaces éip ={W:[0,1? > [-1,1]}
G®:={W:[0 1> R}
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Introduction to Graphons
Compactness of Graphon Space (Lovész, 2012)

Cut norm: |Wlo:= sup IJ W(x,y)dxdy|
M, TC[0,1] JMXT

Cut metric: SD(W,V)::ingW‘b—VHD, #1

Theorem (Lovész (2012))

The graphon spaces (Gg’, 80) and any closed bounded subset of
(Gi{’, ffig) are compact.

By compactness, infinite sequences of graphons will necessarily
possess one or more sub-sequential limits under the cut metric.

WO (x,y) = W(d(x), d(y))
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Introduction to Graphons
Graphons as Operators (Lovasz, 2012)

Graphon W € G as an operator: W : 12[0, 1] — 12[0, 1]

Operation: [Wv](x) = J (x, a)v(o)de v e 12(0,1]

w
Operator Product:  [UW](x,y) :J W(z,y)dz, U W eGP

Norm relations :
[Wllop < [[W][2, [Wlo < [[Wllop < V8[[W]o.

See (Gao and Caines, 2019), (Janson, 2010; Parise and Ozdaglar, 2018)

Graphon operators are Hilbert-Schmidt operators
(Rudin, 1991; J Mercer, 1909; Szegedy, 2011)

Shuang Gao  Optimal and Approximate Solutions to Linear Quadratic Regulation of a Class of Graphon Dynamical Systems 8/27



Introduction to Graphons
Graphon Differential Equations (SG PEC TAC20)

Let A = (xol + A) with A € G3P. Then

1

[AVI() = ogv() + JO Al mvimdn, veld,)

A € G4 is a bounded linear operator and hence generates the
uniformly continuous semigroup

= Al
Salt)=ett=)" — (1)
=) :

The initial value problem of the graphon differential equation
yo=Ay,, yoel?0,1], 0<t<T (2)
has a solution given by

yi = etyo, yee12[0,1], 0<t<T. (3)
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Networks of Linear Systems and Their Limits

Linear Network System
The dynamics of the i*" agent in the network
) o1 N : . :
Xi = aoxy + N Z aijx} + Bouy + N Z by,
j=1 j=1
te [0, T, g, Po€R, xi,uie]R,

Neighborhood
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Networks of Linear Systems and Their Limits
Linear Network Systems Described by Graphons

Dynamics:
x = (ool + AN 4 (Bol + BN, teo0,T],
N] [N =
do.Bo e B, M. ul €12 oy, AN BN &P

where

N N
AN :ZZn @)aij, (9, ¢) €01

N
x V@)=Y 1, O, v e,

(5)

(6)

(7)

L, (-): the indicator function; prc 0.1): the set of all piece-wise

constant functions in ]—[0,1]
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Networks of Linear Systems and Their Limits
Linear Network Systems Described by Graphons

ay x (1)

Vectors
: : 3 : : and
X \ . - Matrices

ann

L2,¢[0,1] functions
and
Step Functions

L2[0, 1] functions
and
Graphons
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Graphon LQR

Graphon System with Non-compact System Operator

We formulate the graphon linear system (A;B) as follows:
% = Ax¢ +Bug, tel[0,T], )

where A = (ool + A) with A € G and &g € R, B € £(L2[0, 1]),
Xt € 12[0,1] is the system state at time t, and u; € 12[0, 1] is the
control input at time t.

Proposition (Bensoussan et al. (2007))

The system (A;B) in (8) has a unique mild solution
x € C([0, T}; L2[0, 1]) for any x¢ € L2[0, 1] and any
u € L([0, TJ; L2[0, 1)).
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Graphon LQR

Control Objective

-
Objective: minJ(u) = J ct(x¢, ug)dt + c1(x7),
u 0
where c¢(ug, x¢) = (x¢, Qx¢) + (ue, ur), cr(x7) = (X7, Pox7)

subject to system constrains in (8).
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Graphon LQR

Assumptions

1l Q and Py are linear operators on L2[0, 1] that are Hermitian and
non-negative (i.e., Q, Py > 0).

2| The graphon A as an operator has a finite number (d)
eigenfunctions corresponding to the non-zero eigenvalues.

d
Axy) =) Afi(fe(y), (xy) € 0,17 ©)
i=1
38l Bisin PO(A) and it is given by
b
B = polyg(A) := > BrA¥, by >0.
k=0

4 Q and Pq are in PO(A), represented by
Q = polyg(A) == Y3 o qkA*, h>0,
Py = polyp, (A) := J | _ozkA*, 1>0.
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Graphon LQR

Existence and Uniqueness of Solutions
Riccati equation:
P=A"P+PA—PBB'P+Q, P(0) =P (10)
The optimal control u*:
ui = -B'P(T—t)x;, tel0,T] (11)
The closed loop equation:
x¢ = Ax¢ — BBTP(T — t)x¢,

12
t € [0, T],xg € L2[0, 1]. (12)

Proposition (Bensoussan et al. (2007))

Under Assumption 1, there exists a unique solution to the Riccati
equation (10) and furthermore there exists a unique optimal
solution pair (u*,x*) as given in (11) and (12).
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Graphon LQR

Auxiliary State and Control

Introduce the auxiliary state and control as:

d d
)v(t:Xt—Z)_(}[, lult:llt—Zl_l}[ (13)
=il 1=1

= (x¢, fi)fi: projection of x¢ into the eigendirection fi
= (uy, fi)fi: projection of uy into the eigendirection fi
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Graphon LQR

Decoupled LQR Problems

1 Eigensystem LQR problems

x{ = (0tg + Ae)X{ + polyg (Ae)EL,

_ T (14)
T¢@" :J cr(uf, xf)dt + ¢ (xh),1<1<d
(0]
where C{ (iif, X{) = polyg(Ae) [X¢[3 + [[¢]3 and
4

b (x%) = polyp, (Ae) |15 |13

2l Auxiliary system LQR problem

% = xo¥¢ + Poty,
L (15)
T() :J e (i, o)At el )

0

where & (i, X¢) = qol[%¢]|3 + [[tie]|3 and &r (%) = zo|%r 3.

See (Gao, Mahajan CDC19) for direct methods on finite networks. Decoupling method with mean field couplings:
(Arabneydi, Mahajan CDC15, ArXiv16)
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Graphon LQR

Decoupled LQR Problems

Lemma (SG, PEC, CDC19')

If Assumptions 1-4 are satisfied, then solving the optimal control
problems (14) and (15) is equivalent to solving the original optimal
control problem defined by (8) and (14). Moreover, the optimal control
solution exists and is unique.
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Graphon LQR

Centralized Optimal Solutions

Theorem (SG, PEC, CDC19’)

If Assumptions 1-4 are satisfied, then the optimal control law is given

by
d

uy = —foly—iX¢ — Z polyg (A )M _xt, (16)
=1

where L :={L¢ : t € [0, T]} is the solution to the Riccati equation
L = 2oL — B3L2 4 qol, Lo = 2o, (17)
and M* := {M! : t € [0, T]} is the solution to the Riccati equation
M = 2(g + A¢)M{ — polyg(Ae)*(M{)? + polyq (Ae)1,

(18)
Mg = polyp,(Ag)l, 1<1<d
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Graphon LQR

Localized Optimal Solutions

Theorem (SG, PEC, CDC19’)

If Assumptions 1-4 are satisfied, then the localized optimal control law
for the Y™ subsystem with y € ly, ¥l C [0,1] is given by

o

e (y) = —Bolr_ike(y ZpolyB AOME_(xife(y),  (19)

where L :={L; : t € [0, T]} is the solution to the scalar Riccati equation
L, = 20l — ﬁ%]—% +do, Lo=20, (20)
and M :={M! : t € [0, T]} is the solution to the scalar Riccati equation

M{ = 2(ag + Ad)M{ — polyg (Ae)*(M)? + polyq (Ad),

; (21)
M§ = polyp, (A¢), 1<1<d.
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Graphon LQR

Information Structure and Complexity

Information Required:
For a representative subsystem vy € [y,¥y] C [0, 1]

@ all the eigenvalues of A and the value of the respective
eigenfunctions at its index location, that is, Ag, fo(y) for all
1<8<d;

2| the projections of the initial state xg onto each eigenfunction
direction, that is, )'cg = (x0,f¢) forall 1 < €< d;
(Preserving private information)

3l its own state x¢(y).
Complexity:
Solving (d + 1) scalar Riccati equations VS infinite dimensional

Riccati equations
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Graphon LQR

Approximate Solution

Finite Spectral Approximation

00 L
A=) M()fely) = AL=) Af(fely), (xy) €017 (22)
i=1 =1

Proposition (SG, PEC, CDC19')

Assume polyg(A) = Bol. If the localized optimal control law (19) is
applied with the approximation of A by Ay given in (22) and the
observation of eigenstates xf, 1 < < L by all subsystems is in real time,

then

’)‘(’h T
%:exp(—ﬁSJ‘ (ME’—M?)dt), h>1L,
Xt 0

where

’7\7113 = 200M! — (BoM™M)? + qo, M}} =29
M = 2(atg + Ap)MP — BZ(MP)? + polyg(An), MY = polyp, (An).
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Numerical Example

Parameters: ]
oo =2, A(x,y) = cos(2nt(x —y)), V(x,y) € [0,1]?, polyg(s) =1+ S

polyg(s) = (1 —s)?, polyp, (s) = (1 —s)?,

Localized optimal control:
o V2
u(y) = —Lr_X¢(v)— MT (X} sin 27ty 4+%2 cos 27ry), v € ly. ¥l C [0, 1]
(23)
where %, (y) = x¢(y) — V2% sin 27ty — V/2X2 cos 27ty and

Le=4L—1241, Lo=1,
1 1

M =s5M!E — Z(Mi)2 +7 M{=1 te{1,2,tel0,Tl.
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Numerical Example

Eigenfunctions:

f; = v/2sin27n(-) and f» = /2 cos 27t(+);

Auxiliary State 1st Eigenstate 2nd Eigenstate

.5 . .5
time (s) subsys subsys time (s)  subsys
Auxiliary Control 1st Eigencontrol 2nd Eigencontrol

subsys

05 1 05

subsys time (s) subsys time (s) subsys

time (s)  subsys

A1 =

0.5
time (s)
Control

05
time (5)

The simulation demonstration runs on the corresponding step function system
based on the uniform partition of size 40. The initial states are generated randomly.

2 scalar Riccati equations VS a 40 x 40 matrix Riccati equation
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Conclusion

@ Graphon couplings in cost and dynamics: we obtain the
optimal solution to the linear quadratic regulation of a class of
graphon dynamical systems where the dynamics and cost
functions share the same underlying graphon structure.

21 Locally computed solution: the solution can be computed
and implemented locally

3 Low complexity: the complexity of the solution depends on
the number of nonzero eigenvalues of the underlying graphon.
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Conclusion

Directions for the Control of Graphon Dynamical Systems

Important aspects includes:
1] Subspace Decomposition
2] Graphon Linear Quadratic Gaussian
3] Graphon Mean Field Games (Caines, Huang CDC18' CDC19')
4 Graphon Control with Non-linear Local Dynamics
5] Control of Time Varying Graphon Dynamical Systems

6] Graphon Control Applications
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Thank you!
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Simulation Example 1
Bipartite Network Example

At =2Bt=4D¢=3,Q¢=T;
Qr =5H¢ =6 Hr =2;R¢ =3;
poly, (s) =1+ 2s + s?;

poly,(s) =1+2s+ Sa

Auxillary Control 1st Eigendirection Control 2nd Eigendirection Control Control

1 1
05
0 0 "
time (s) time (s) time (s)

Auxillary State 1st Eigendirection State 2nd Eigendirection State

time (s) agent (s) agent time (s) agent
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Simulation Example 2

Sinusoidal Network Example

At =2Bt=4,D¢=3,Q¢=T;
Qr =5 H¢ =6 Hr =2;R¢ =3;
poly, (s) =1+ 2s + s?;

poly,(s) =1+2s+ Sa

Auxillary Control 1st Eigendirection Control 2nd Eigendirection Control Control

0.5
0

8 0.5
1 1 2015 1
5 . 10 o 5
0

0 time (s) time (s) agent time (s)

Auxillary State 1st Eigendirection State 2nd Eigendirection State

1
5

time (s) agent

1
.5

time (s)
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