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Motivation

Networks are everywhere, growing in size and complexity.
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Background
Challenges in controlling complex networks of dynamical systems:

Large or growing number of nodes

Complex connections

Dynamics

Analysis problem

Controllability, observability and control energy metric, etc.
(Liu et al., 2011), (Yan et al., 2015),(Pasqualetti et al., 2014)

Synthesis problem

Simplified control objectives (e.g., consensus or synchronization)
(Olfati-Saber and Murray, 2003; Movric and Lewis, 2013; Arenas et al., 2008)

Simplified control inputs (e.g., pinning control or ensemble control)
(Grigoriev et al., 1997; Wang and Chen, 2002) (Li, 2011)

Simplified couplings between subsystems (e.g., symmetric
interconnections, exchangeable subsystems, or patterned systems)
(Lunze, 1986; Grizzle and Marcus, 1985; Yang and Zhang, 1995, 1996; Sundareshan and Elbanna, 1991),

(Madjidian and Mirkin, 2014; Arabneydi and Mahajan, 2017), (Hamilton and Broucke, 2012)



Background

Graphon control: approximate control of dynamical systems on
arbitrary-size complex networks

Mathematical framework for dynamical systems on
arbitrary-size networks: Graphon control systems
(SG PEC: CDC17, CDC18, MTNS18, CDC19, TAC20)

Systems and control theory for complex networks of linear
dynamical systems:

(a) Graphon state-to-state control (SG PEC: CDC17, TAC20)

(b) Centralized graphon linear quadratic regulation
(SG PEC: CDC18, MTNS18, TAC20)

(c) Collaborative graphon linear quadratic regulation
(SG PEC: CDC19)
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Graphon Control Methodology (SG PEC: CDC17,18,19,TAC20)

Convergence

Control synthesis

Approximation

Finite Dim
Network System

(AN;BN)

MG
Infinite Dim
Network System

(A[N]; B[N])

Converge
N→∞ Infinite Dim

Limit System

(A; B)

Synthesis
(Min-Energy and LQR)

Control Law u

for (A; B)

Approximate

Control Law u[N]

for (A[N]; B[N])

MG
Control Law uN

for (AN;BN)

Infinite Dimensional Space
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Program

1 Introduction to Graphons

2 Networks of Linear Systems and Their Limits

3 Graphon Linear Quadratic Regulation

4 Conclusion



Introduction to Graphons
Graphs, Adjacency Matrices and Pixel Pictures

How many 4-cycles must a graph with edge density at least 1/2 have?

So, suppose G has n vertices and at least n(n� 1)/4 edges, half as many as are possible. Can you avoid
having many 4-cycles? It is an interesting and worthwhile exercise to try to find as many as you can;
start with trying to find at least one. It is not hard to see that there are at most on the order of n4

4-cycles (in fact, there are 3
�
n
4

�
possible). The following result of Erdős tells us that there must be very

many 4-cycles, in fact, on the order of n4 of them.

Theorem (Erdős) For any graph G,

t( , G) � t( , G)4.

In particular, if t( , G) � 1/2, then t( , G) � 1/16.

In light of the theorem, it would be best to reformulate our problem as follows.

Minimize t( , G) over all finite graphs G satisfying t( , G) � 1/2.

It is beneficial at this point to draw an analogy with a problem familiar from elementary calculus.

Minimize x3 � 6x over all real numbers x satisfying x � 0.

The minimum here is attained at x =
p

2, which, though our polynomial has rational coe�cients, is
irrational. The best we can do in the rational numbers is find a sequence limiting to

p
2 at which the

polynomial achieves values approaching the minimum. Completing the rational numbers to the real
numbers allows us to objectify the limit, which algebra then allows us to realize and work with as

p
2.

It turns out that we are in an analogous situation with our graph problem. Erdős’ theorem tells us that
the minimum of t( , G) is greater than or equal to 1/16, and with a little extra work, it can be shown
that that minimum is not achieved by any finite graph. There is, however, a sequence of finite graphs
(Rn)n with edge density at least 1/2 and 4-cycle density approaching 1/16. Indeed, for each n � 1, let
Rn be an instance of a random graph on n vertices where the existence of each possible edge is decided
independently with probability 1/2. By throwing those Rn’s away for which t( , Rn) < 1/2, the 4-cycle
density in the remaining graphs almost surely limits to 1/16.

The situation is now primed for us to seek to, in pure analogy, complete the space of graphs, realize the
limit of (Rn)n as workable object, and understand the way in which that object achieves the minimum
of 1/16 in our problem above.

Graphons

Let’s speculate as to the possible limits of the graph sequence (Rn)n, where Rn is an instance of a
random graph with edge probability 1/2. One real possibility is the Rado graph, the random graph with
vertex set N and edge probability 1/2. (I write “the” random graph since any two instances of such a
graph are almost surely isomorphic.) This and many other possible limits are explored in [1] but are not
examples of graphons.

Exploring an idea that at first sight is a bit more naive, consider the following three representations of
a graph.

Graph Adjacency Matrix Pixel Picture

�!

0
BB@

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

1
CCA �!

2Graph, Adjacency Matrix, Pixel Picture (Lovász, 2012)

The whole pixel picture is presented in a unit square [0, 1]× [0, 1],

so the square elements have sides of length
1

N
, where N is the

number of nodes.
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Introduction to Graphons
Graph Sequence Converging to GraphonFinally, consider the following inductively defined sequence of graphs (Gn)n. Let G1 = . For n � 2,

construct Gn from Gn�1 by adding one new vertex, then, considering each pair of non-adjacent vertices in
turn, drawing an edge between them with probability 1/n. This is called a growing uniform attachment
graph sequence, and the pixel pictures below come from one particular instance of a such a sequence.
This sequence of graphs almost surely limits to the graphon 1 � max(x, y).

It is finally time to define graphons properly.

Definitions A labeled graphon is a symmetric, Lebesgue-measurable function from [0, 1]2 to [0, 1] (mod-
ulo the usual identification almost everywhere). An unlabeled graphon is a graphon up to relabeling,
where a relabeling is given by an invertible, measure preserving transformation of the [0, 1] interval.
More formally, a labeled graphon W determines the equivalence class of graphons

[W ] =

⇢
W' : (x, y) 7! W

�
'(x),'(y)

� ����
' an invertible, measure

preserving transformation of [0, 1]

�
.

Such equivalence classes are called unlabeled graphons.

It is helpful to think of graphons as edge-weighted graphs on the vertex set [0, 1]. In this sense, the
sequence (Rn)n of instances of random graphs with edge probability 1/2 almost surely limits to the
complete graph on a continuum of vertices, each edge with weight 1/2. Also, note that any graph gives
rise to several labeled graphons via its various pixel pictures and that each of these graphons correspond
to the same unlabeled graphon.

This viewpoint also allows us to extend homomorphism densities to graphons in an intuitive way. This
will allow us to see how the limit of the graph sequence (Rn)n, the constant 1/2 graphon, solves the
minimization problem from the previous section.

For a finite graph G, the value t( , G) may be computed by giving each vertex of G a mass of 1/n and
integrating the edge indicator function over all ordered pairs of vertices. In complete analogy, the edge
density of a graphon W is given by the expression

t( , W ) =

Z

[0,1]2
W (x, y) dxdy.

It is not hard to see then that

t( , W ) =

Z

[0,1]4
W (x1, x2)W (x2, x3)W (x3, x4)W (x4, x1) dx1dx2dx3dx4.

It is straightforward from here to write down the formula for the homomorphism density t(H, W ) of a
finite graph H into a graphon W .

Finally, in the case of W ⌘ 1/2 as the limit graphon of (Rn)n, we see that t( , W ) = 1/2 and
t( , W ) = 1/16, solving the minimization problem from the previous section elegantly.

4

Graph Sequence Converging to its Limit (Lovász, 2012)

Graphons: bounded symmetric Lebesgue measurable functions

W : [0, 1]2 → [0, 1]

interpreted as weighted graphs on the vertex set [0, 1].

G̃sp
0 := {W : [0, 1]2 → [0, 1]}

Notations of Spaces G̃sp
1 := {W : [0, 1]2 → [−1, 1]}

G̃sp := {W : [0, 1]2 → R}
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How many 4-cycles must a graph with edge density at least 1/2 have?

So, suppose G has n vertices and at least n(n� 1)/4 edges, half as many as are possible. Can you avoid
having many 4-cycles? It is an interesting and worthwhile exercise to try to find as many as you can;
start with trying to find at least one. It is not hard to see that there are at most on the order of n4

4-cycles (in fact, there are 3
�
n
4

�
possible). The following result of Erdős tells us that there must be very

many 4-cycles, in fact, on the order of n4 of them.

Theorem (Erdős) For any graph G,

t( , G) � t( , G)4.

In particular, if t( , G) � 1/2, then t( , G) � 1/16.

In light of the theorem, it would be best to reformulate our problem as follows.

Minimize t( , G) over all finite graphs G satisfying t( , G) � 1/2.

It is beneficial at this point to draw an analogy with a problem familiar from elementary calculus.

Minimize x3 � 6x over all real numbers x satisfying x � 0.

The minimum here is attained at x =
p

2, which, though our polynomial has rational coe�cients, is
irrational. The best we can do in the rational numbers is find a sequence limiting to

p
2 at which the

polynomial achieves values approaching the minimum. Completing the rational numbers to the real
numbers allows us to objectify the limit, which algebra then allows us to realize and work with as

p
2.

It turns out that we are in an analogous situation with our graph problem. Erdős’ theorem tells us that
the minimum of t( , G) is greater than or equal to 1/16, and with a little extra work, it can be shown
that that minimum is not achieved by any finite graph. There is, however, a sequence of finite graphs
(Rn)n with edge density at least 1/2 and 4-cycle density approaching 1/16. Indeed, for each n � 1, let
Rn be an instance of a random graph on n vertices where the existence of each possible edge is decided
independently with probability 1/2. By throwing those Rn’s away for which t( , Rn) < 1/2, the 4-cycle
density in the remaining graphs almost surely limits to 1/16.

The situation is now primed for us to seek to, in pure analogy, complete the space of graphs, realize the
limit of (Rn)n as workable object, and understand the way in which that object achieves the minimum
of 1/16 in our problem above.

Graphons

Let’s speculate as to the possible limits of the graph sequence (Rn)n, where Rn is an instance of a
random graph with edge probability 1/2. One real possibility is the Rado graph, the random graph with
vertex set N and edge probability 1/2. (I write “the” random graph since any two instances of such a
graph are almost surely isomorphic.) This and many other possible limits are explored in [1] but are not
examples of graphons.

Exploring an idea that at first sight is a bit more naive, consider the following three representations of
a graph.

Graph Adjacency Matrix Pixel Picture

�!

0
BB@

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

1
CCA �!
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Introduction to Graphons
Compactness of Graphon Space (Lovász, 2012)

Cut norm: ‖W‖� := sup
M,T⊂[0,1]

|

∫
M×T

W(x,y)dxdy|

Cut metric: δ�(W, V) := inf
φ
‖Wφ − V‖�, ∗1

Theorem (Lovász (2012))

The graphon spaces (Gsp
0 , δ�) and any closed bounded subset of

(Gsp
R , ffi�) are compact.

By compactness, infinite sequences of graphons will necessarily
possess one or more sub-sequential limits under the cut metric.

1Wφ(x,y) = W(φ(x),φ(y))
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Finally, consider the following inductively defined sequence of graphs (Gn)n. Let G1 = . For n � 2,
construct Gn from Gn�1 by adding one new vertex, then, considering each pair of non-adjacent vertices in
turn, drawing an edge between them with probability 1/n. This is called a growing uniform attachment
graph sequence, and the pixel pictures below come from one particular instance of a such a sequence.
This sequence of graphs almost surely limits to the graphon 1 � max(x, y).

It is finally time to define graphons properly.

Definitions A labeled graphon is a symmetric, Lebesgue-measurable function from [0, 1]2 to [0, 1] (mod-
ulo the usual identification almost everywhere). An unlabeled graphon is a graphon up to relabeling,
where a relabeling is given by an invertible, measure preserving transformation of the [0, 1] interval.
More formally, a labeled graphon W determines the equivalence class of graphons

[W ] =

⇢
W' : (x, y) 7! W

�
'(x),'(y)

� ����
' an invertible, measure

preserving transformation of [0, 1]

�
.

Such equivalence classes are called unlabeled graphons.

It is helpful to think of graphons as edge-weighted graphs on the vertex set [0, 1]. In this sense, the
sequence (Rn)n of instances of random graphs with edge probability 1/2 almost surely limits to the
complete graph on a continuum of vertices, each edge with weight 1/2. Also, note that any graph gives
rise to several labeled graphons via its various pixel pictures and that each of these graphons correspond
to the same unlabeled graphon.

This viewpoint also allows us to extend homomorphism densities to graphons in an intuitive way. This
will allow us to see how the limit of the graph sequence (Rn)n, the constant 1/2 graphon, solves the
minimization problem from the previous section.

For a finite graph G, the value t( , G) may be computed by giving each vertex of G a mass of 1/n and
integrating the edge indicator function over all ordered pairs of vertices. In complete analogy, the edge
density of a graphon W is given by the expression

t( , W ) =

Z

[0,1]2
W (x, y) dxdy.

It is not hard to see then that

t( , W ) =

Z

[0,1]4
W (x1, x2)W (x2, x3)W (x3, x4)W (x4, x1) dx1dx2dx3dx4.

It is straightforward from here to write down the formula for the homomorphism density t(H, W ) of a
finite graph H into a graphon W .

Finally, in the case of W ⌘ 1/2 as the limit graphon of (Rn)n, we see that t( , W ) = 1/2 and
t( , W ) = 1/16, solving the minimization problem from the previous section elegantly.
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Introduction to Graphons
Graphons as Operators (Lovász, 2012)

Graphon W ∈ G̃sp
1 as an operator: W : L2[0, 1]→ L2[0, 1]

Operation: [Wv](x) =

∫1

0

W(x,α)v(α)dα v ∈ L2[0, 1]

Operator Product: [UW](x,y) =

∫1

0

U(x, z)W(z,y)dz, U, W ∈ G̃sp
1

Norm relations :

‖W‖op 6 ‖W‖2, ‖W‖� 6 ‖W‖op 6
√

8‖W‖�.

See (Gao and Caines, 2019), (Janson, 2010; Parise and Ozdaglar, 2018)

Graphon operators are Hilbert-Schmidt operators
(Rudin, 1991; J Mercer, 1909; Szegedy, 2011)
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Introduction to Graphons
Graphon Differential Equations (SG PEC TAC20)

Let A = (α0I+ A) with A ∈ G̃sp
1 . Then

[Av](·) = α0v(·) +
∫1

0
A(·,η)v(η)dη, v ∈ L2

[0,1].

A ∈ G1
AI is a bounded linear operator and hence generates the

uniformly continuous semigroup

SA(t) := e
At =

∞∑
k=0

tkAk

k!
. (1)

The initial value problem of the graphon differential equation

ẏt = Ayt, y0 ∈ L2[0, 1], 0 6 t 6 T (2)

has a solution given by

yt = e
Aty0, yt ∈ L2[0, 1], 0 6 t 6 T . (3)
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Program

1 Introduction to Graphons

2 Networks of Linear Systems and Their Limits

3 Graphon Linear Quadratic Regulation

4 Conclusion



Networks of Linear Systems and Their Limits
Linear Network System

The dynamics of the ith agent in the network

ẋit = α0x
i
t +

1

N

N∑
j=1

aijx
j
t + β0u

i
t +

1

N

N∑
j=1

biju
j
t,

t ∈ [0, T ], α0,β0 ∈ R, xit,u
i
t ∈ R,

(4)

0

1

=
Neighborhood 

Xi

Xl

Xk

Xn

Xm

Xj

ail

aim

aij

ain

aik

ajn

alm

amj

alk

akn

+

0

1
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Networks of Linear Systems and Their Limits
Linear Network Systems Described by Graphons

Dynamics:

ẋ
[N]
t = (α0I+ A[N])x

[N]
t + (β0I+ B[N])u

[N]
t , t ∈ [0, T ],

α0,β0 ∈ R, x
[N]
t , u

[N]
t ∈ L2

pwc[0,1], A[N], B[N] ∈ G̃sp
1

(5)

where

A[N](ϑ,ϕ) =
N∑
i=1

N∑
j=1

1
Pi
(ϑ)1

Pj
(ϕ)aij, (ϑ,ϕ) ∈ [0, 1]2 (6)

x
[N]
t (ϑ) =

N∑
i=1

1
Pi
(ϑ)xit, ∀ϑ ∈ [0, 1] (7)

1
Pi
(·): the indicator function; L2

pwc[0,1]: the set of all piece-wise

constant functions in L2
[0,1]
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Networks of Linear Systems and Their Limits
Linear Network Systems Described by Graphons

1

0

=

1

+

0

1

0

1

=

1 1

Graphon Graphon

Vectors
and

Matrices

                functions 
and 

Step Functions

           functions 
and 

Graphons
+

0
0 0
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1 Introduction to Graphons

2 Networks of Linear Systems and Their Limits

3 Graphon Linear Quadratic Regulation

4 Conclusion



Graphon LQR
Graphon System with Non-compact System Operator

We formulate the graphon linear system (A;B) as follows:

ẋt = Axt + But, t ∈ [0, T ], (8)

where A = (α0I+ A) with A ∈ G̃sp
1 and α0 ∈ R, B ∈ L(L2[0, 1]),

xt ∈ L2[0, 1] is the system state at time t, and ut ∈ L2[0, 1] is the
control input at time t.

Proposition (Bensoussan et al. (2007))

The system (A;B) in (8) has a unique mild solution
x ∈ C([0, T ];L2[0, 1]) for any x0 ∈ L2[0, 1] and any
u ∈ L2([0, T ];L2[0, 1]).
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Graphon LQR
Control Objective

Objective: min
u
J(u) =

∫T
0
ct(xt, ut)dt+ cT (xT ),

where ct(ut, xt) = 〈xt, Qxt〉+ 〈ut, ut〉, cT (xT ) = 〈xT , P0xT 〉

subject to system constrains in (8).
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Graphon LQR
Assumptions

1 Q and P0 are linear operators on L2[0, 1] that are Hermitian and
non-negative (i.e., Q, P0 > 0).

2 The graphon A as an operator has a finite number (d)
eigenfunctions corresponding to the non-zero eigenvalues.

A(x,y) =
d∑
i=1

λ`f`(x)f`(y), (x,y) ∈ [0, 1]2. (9)

3 B is in PO(A) and it is given by

B = polyB(A) :=

bL∑
k=0

βkAk, bL > 0.

4 Q and P0 are in PO(A), represented by

Q = polyQ(A) :=
∑h
k=0 qkAk, h > 0,

P0 = polyP0
(A) :=

∑r
k=0 zkAk, r > 0.
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Graphon LQR
Existence and Uniqueness of Solutions

Riccati equation:

Ṗ = ATP + PA− PBBTP + Q, P(0) = P0 (10)

The optimal control u∗:

u∗t = −BTP(T − t)x∗t , t ∈ [0, T ] (11)

The closed loop equation:

ẋt = Axt − BBTP(T − t)xt,

t ∈ [0, T ], x0 ∈ L2[0, 1].
(12)

Proposition (Bensoussan et al. (2007))

Under Assumption 1, there exists a unique solution to the Riccati
equation (10) and furthermore there exists a unique optimal
solution pair (u∗, x∗) as given in (11) and (12).
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Graphon LQR
Auxiliary State and Control

Introduce the auxiliary state and control as:

x̆t = xt −

d∑
l=1

x̄lt, ŭt = ut −

d∑
l=1

ūlt (13)

x̄lt = 〈xt, fl〉fl: projection of xt into the eigendirection fl
ūlt = 〈ut, fl〉fl: projection of ut into the eigendirection fl
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Graphon LQR
Decoupled LQR Problems

1 Eigensystem LQR problems
˙̄x`t = (α0 + λ`)x̄

`
t + polyB(λ`)ū

`
t,

J̄`(ū`) =

∫T
0

c̄`t(ū
`
t, x̄`t)dt+ c̄

`
T (x̄

`
T ), 1 6 l 6 d

(14)

where c̄`t(ū
`
t, x̄`t) = polyQ(λ`)‖x̄`t‖2

2 + ‖ū`t‖2
2 and

c̄`T (x̄
`
T ) = polyP0

(λ`)‖x̄`T‖2
2;

2 Auxiliary system LQR problem
˙̆xt = α0x̆t + β0ŭt,

J̆(ŭ) =

∫T
0

c̆t(ŭt, x̆t)dt+ c̆T (x̆T ),
(15)

where c̆t(ŭt, x̆t) = q0‖x̆t‖2
2 + ‖ŭt‖2

2 and c̆T (x̆T ) = z0‖x̆T‖2
2.

See (Gao, Mahajan CDC19) for direct methods on finite networks. Decoupling method with mean field couplings:

(Arabneydi, Mahajan CDC15, ArXiv16)
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Graphon LQR
Decoupled LQR Problems

Lemma (SG, PEC, CDC19’)

If Assumptions 1-4 are satisfied, then solving the optimal control
problems (14) and (15) is equivalent to solving the original optimal
control problem defined by (8) and (14). Moreover, the optimal control
solution exists and is unique.
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Graphon LQR
Centralized Optimal Solutions

Theorem (SG, PEC, CDC19’)

If Assumptions 1-4 are satisfied, then the optimal control law is given
by

ut = −β0LT−tx̆t −

d∑
`=1

polyB(λ`)M
`
T−tx

`
t, (16)

where L := {Lt : t ∈ [0, T ]} is the solution to the Riccati equation

L̇t = 2α0Lt − β
2
0L2
t + q0I, L0 = z0I, (17)

and M` := {M`
t : t ∈ [0, T ]} is the solution to the Riccati equation

Ṁ`
t = 2(α0 + λ`)M

`
t − polyB(λ`)

2(M`
t)

2 + polyQ(λ`)I,

M`
0 = polyP0

(λ`)I, 1 6 l 6 d.
(18)
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Graphon LQR
Localized Optimal Solutions

Theorem (SG, PEC, CDC19’)

If Assumptions 1-4 are satisfied, then the localized optimal control law
for the γth subsystem with γ ∈ [γ,γ] ⊂ [0, 1] is given by

ut(γ) = −β0LT−tx̆t(γ) −

d∑
`=1

polyB(λ`)M
`
T−tx̄

`
tf`(γ), (19)

where L := {Lt : t ∈ [0, T ]} is the solution to the scalar Riccati equation

L̇t = 2α0Lt − β
2
0L

2
t + q0, L0 = z0, (20)

and M` := {M`
t : t ∈ [0, T ]} is the solution to the scalar Riccati equation

Ṁ`
t = 2(α0 + λ`)M

`
t − polyB(λ`)

2(M`
t)

2 + polyQ(λ`),

M`
0 = polyP0

(λ`), 1 6 l 6 d.
(21)
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Graphon LQR
Information Structure and Complexity

Information Required:
For a representative subsystem γ ∈ [γ,γ] ⊂ [0, 1]

1 all the eigenvalues of A and the value of the respective
eigenfunctions at its index location, that is, λ`, f`(γ) for all
1 6 ` 6 d;

2 the projections of the initial state x0 onto each eigenfunction
direction, that is, x̄`0 = 〈x0, f`〉 for all 1 6 ` 6 d;
(Preserving private information)

3 its own state xt(γ).

Complexity:
Solving (d+ 1) scalar Riccati equations VS infinite dimensional
Riccati equations
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Graphon LQR
Approximate Solution

Finite Spectral Approximation

A =

∞∑
i=1

λ`f`(x)f`(y) ≈ AL :=

L∑
`=1

λ`f`(x)f`(y), (x,y) ∈ [0, 1]2 (22)

Proposition (SG, PEC, CDC19’)

Assume polyB(A) = β0I. If the localized optimal control law (19) is
applied with the approximation of A by AL given in (22) and the
observation of eigenstates x`, 1 6 ` 6 L by all subsystems is in real time,
then

x̃ht
x̄ht

= exp
(
− β2

0

∫T
0

(M̃h
t −Mh

t )dt
)

, h > L,

where

˙̃
Mh
t = 2α0M̃

h
t − (β0M̃

h
t )

2 + q0, M̃h
0 = z0

Ṁh
t = 2(α0 + λh)M

h
t − β2

0(M
h
t )

2 + polyQ(λh), Mh
0 = polyP0

(λh).
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Numerical Example

Parameters:

α0 = 2, A(x,y) = cos(2π(x− y)), ∀(x,y) ∈ [0, 1]2, polyB(s) = 1 +
1

2
s,

polyQ(s) = (1 − s)2, polyP0
(s) = (1 − s)2,

Localized optimal control:

ut(γ) = −LT−tx̆t(γ)−

√
2

4
M`
T−t(x̄

1
t sin 2πγ+x̄2

t cos 2πγ),γ ∈ [γ,γ] ⊂ [0, 1]

(23)

where x̆t(γ) = xt(γ) −
√

2x̄1
t sin 2πγ−

√
2x̄2
t cos 2πγ and

L̇t = 4Lt − L
2
t + 1, L0 = 1,

Ṁ`
t = 5M`

t −
1

4
(M`

t)
2 +

1

4
, M`

0 = 1, ` ∈ {1, 2}, t ∈ [0, T ].
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Numerical Example

Eigenfunctions:

f1 =
√

2 sin 2π(·) and f2 =
√

2 cos 2π(·); λ1 = λ2 =
1

2

Figure: The simulation demonstration runs on the corresponding step function system
based on the uniform partition of size 40. The initial states are generated randomly.

2 scalar Riccati equations VS a 40× 40 matrix Riccati equation
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Program

1 Introduction to Graphons

2 Networks of Linear Systems and Their Limits

3 Graphon Linear Quadratic Regulation

4 Conclusion



Conclusion

1 Graphon couplings in cost and dynamics: we obtain the
optimal solution to the linear quadratic regulation of a class of
graphon dynamical systems where the dynamics and cost
functions share the same underlying graphon structure.

2 Locally computed solution: the solution can be computed
and implemented locally

3 Low complexity: the complexity of the solution depends on
the number of nonzero eigenvalues of the underlying graphon.
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Conclusion
Directions for the Control of Graphon Dynamical Systems

Important aspects includes:

1 Subspace Decomposition

2 Graphon Linear Quadratic Gaussian

3 Graphon Mean Field Games (Caines, Huang CDC18’ CDC19’)

4 Graphon Control with Non-linear Local Dynamics

5 Control of Time Varying Graphon Dynamical Systems

6 Graphon Control Applications

7 ...
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Simulation Example 1
Bipartite Network Example

1 2 3 4 5 6 7 8 9 10
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At = 2;Bt = 4;Dt = 3;Qt = 7;

QT = 5;Ht = 6;HT = 2;Rt = 3;

polyr(s) = 1 + 2s+ s2;

polyq(s) = 1 + 2s+ s2;
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Simulation Example 2
Sinusoidal Network Example
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At = 2;Bt = 4;Dt = 3;Qt = 7;

QT = 5;Ht = 6;HT = 2;Rt = 3;

polyr(s) = 1 + 2s+ s2;

polyq(s) = 1 + 2s+ s2;
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